

Mépos A

2. $\Delta i v \varepsilon \tau \alpha t ~ \eta$ ह $\xi i \sigma \omega \sigma \eta x^{2}+y^{2}-16 y=-32$.

$$
\left\{\begin{array}{l}
x=x(t)=5 \sqrt{2} \sigma v v(t)+9 \\
y=y(t)=5 \sqrt{2} \eta \mu(t)-1
\end{array}, t \in[0,2 \pi)\right.
$$

 ótt $f(x) \leq x-1, x \in(0,+\infty)$.

 $\alpha \nu \tau o ́ ~ x \alpha \iota ~ \nu \alpha ~ \delta \omega \theta \varepsilon i ́ ~ Г \varepsilon \omega \mu \varepsilon \tau \rho เ x ท ́ ~ \varepsilon \rho \mu \eta \nu \varepsilon i ́ \alpha ~ \alpha v \tau о и ́ . ~$

$$
P(B)=\frac{1}{4} \quad P(A \mid B)=\frac{1}{6} \quad P(A \cup B)=\frac{3}{8^{\prime}}
$$

6. $\Delta i v \varepsilon \tau \alpha t ~ \eta \pi \alpha \rho \alpha \beta \circ \lambda \eta \eta \mu \varepsilon \xi i \sigma \omega \sigma \eta y^{2}=4 \alpha x, \alpha>0$ x $\alpha t \tau \alpha, \sigma \eta \mu \varepsilon i \alpha, A\left(\alpha t^{2}, 2 \alpha t\right) x \alpha t B\left(\alpha \rho^{2}, 2 \alpha \rho\right) \alpha \nu \tau \hat{\eta} s(t \neq \rho)$.

 x $\alpha \iota$ ท отоí เx

$$
f^{\prime \prime}(x)-2 f^{\prime}(x)-8 f(x)=0 .
$$

(α) $\mathrm{A} v h(x)=f^{\prime}(x)+2 f(x), \forall x \in \mathbb{R} v \alpha \delta \varepsilon i \xi \varepsilon \tau \varepsilon$ ótt $h^{\prime}(x)-4 h(x)=0, \forall x \in \mathbb{R}$.
(β) $\mathrm{N} \alpha \pi \rho \circ \sigma \delta$ ьорі́бетє т $\tau \nu f$.
(γ) $\mathrm{N} \alpha$ טтодоүібєтв то $\sum_{k=0}^{\infty} f(-4 k)$

$$
f(x)=\frac{1}{\sqrt{2-\eta \mu^{2} x}}, \quad x \in\left[0, \frac{\pi}{2}\right]
$$

(β) $N \alpha \alpha \pi о \delta \varepsilon i \xi \varepsilon \tau \varepsilon \dot{\sigma} \tau t$

$$
\frac{\pi \sqrt{2}}{4} \leq \int_{0}^{\frac{\pi}{2}} f(x) d x \leq \frac{\pi}{2}
$$

10. $\mathrm{N} \alpha$ טтолоүібетє то

$$
\int \frac{x^{2017}}{(x+1)^{2019}} d x
$$

$$
\frac{x}{2} \in[-1,1] \Leftrightarrow-1 \leq \frac{x}{2} \leq 1 \Leftrightarrow-2 \leq x \leq 2
$$

$x_{\alpha} \alpha \rho \alpha$

$$
y=\operatorname{to\xi } \eta \mu\left(\frac{x}{2}\right), x \in[-2,2] \Leftrightarrow \frac{x}{2}=\eta \mu y, y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

 $\tau \eta \varsigma, \delta \eta \lambda$. $\sigma \tau 0(-2,2)$ x $\alpha \iota$ ($\pi \alpha \rho \alpha \gamma \omega \gamma i \zeta о \nu \tau \alpha \varsigma \pi \varepsilon \pi \lambda \varepsilon \gamma \mu \varepsilon ́ v \alpha) \quad \forall x \in(-2,2)$

$$
\frac{x}{2}=\eta \mu y \Leftrightarrow \frac{1}{2}=y^{\prime} \cdot \sigma v v y \Leftrightarrow y^{\prime}=\frac{1}{2 \sigma v v y}
$$

(sival $\sigma v v y \neq 0, \forall y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$). А $\lambda \lambda \dot{\alpha}$,

$$
\sigma v v^{2} y+\eta \mu^{2} y=1 \Rightarrow \sigma v v^{2} y=1-\eta \mu^{2} y
$$

к $\alpha \iota \alpha \rho \circ$ ú $\sigma v v y>0, \forall y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \eta \pi \iota \circ \pi \alpha \dot{\alpha} \omega$ ठivet

$$
\sigma v v y=\sqrt{1-\eta \mu^{2} y}=\sqrt{1-\left(\frac{x}{2}\right)^{2}}=\frac{1}{2} \sqrt{4-x^{2}}
$$

इove $\quad \omega \dot{\varsigma}, \alpha \pi o ́ ~ \tau \alpha ~ \pi i o ~ \pi \alpha ́ \nu \omega \omega$,

$$
y^{\prime}=\frac{1}{2 \sigma v v y}=\frac{1}{2 \frac{1}{2} \sqrt{4-x^{2}}}=\frac{1}{\sqrt{4-x^{2}}}, x \in(-2,2)
$$

2. (α) Eivat

$$
x^{2}+y^{2}-16 y=-32 \Leftrightarrow x^{2}+(y-8)^{2}=32
$$

 то опигio $K_{1}=(0,8)$ коц актiv人. $R_{1}=\sqrt{32}=4 \sqrt{2}$.
(β) 'Еұоицє

$$
\left\{\begin{array}{l}
x=x(t)=5 \sqrt{2} \sigma v v(t)+9 \\
y=y(t)=5 \sqrt{2} \eta \mu(t)-1
\end{array}, t \in[0,2 \pi) \Leftrightarrow\left\{\begin{array}{l}
x(t)-9=5 \sqrt{2} \sigma v v(t) \\
y(t)+1=5 \sqrt{2} \eta \mu(t)
\end{array}, t \in[0,2 \pi)\right.\right.
$$

$$
d\left(K_{1}, K_{2}\right)=\sqrt{(-9-1)^{2}+(1+8)^{2}}=9 \sqrt{2}
$$

$$
\left\{\begin{array} { c }
{ x ^ { 2 } + y ^ { 2 } - 1 6 y = - 3 2 } \\
{ (x + 9) ^ { 2 } + (y + 1) ^ { 2 } = 5 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
x^{2}+y^{2}-16 y=-32 \\
x^{2}+y^{2}+2 y-18 x=-32
\end{array} \Leftrightarrow-16 y=2 y-18 x \Leftrightarrow x=y\right.\right.
$$

$$
\Leftrightarrow x^{2}+x^{2}-16 x+32=0 \Leftrightarrow x^{2}-8 x+16=0 \Leftrightarrow(x-4)^{2}=0 \Leftrightarrow x=\mathbf{4}
$$

$$
\frac{f(x)-\widetilde{f(1)}}{x-1}=\frac{f(x)}{x-1}
$$

$$
\frac{f(x)}{x-1}=\frac{1}{\xi}
$$

O $\mu \omega \varsigma, \xi \in(1, x) \Rightarrow \frac{1}{\xi}<1 \quad x \alpha \iota \quad \alpha \rho \alpha \frac{f(x)}{x-1}<1$, $\delta \eta \lambda . f(x)<x-1$. Opoi $\quad \varsigma \varsigma \alpha \alpha \iota \sigma \tau \eta \nu \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \pi \alpha 0<x<1$. Г $\alpha \alpha$

$$
f(x)=-x^{2}+2 x+8=-(x-1)^{2}+9, \quad x \in[0,4]
$$

 ($\varkappa \lambda \varepsilon \iota \sigma \tau о$) $\overline{\text { t́ } \alpha ́ \sigma \tau \eta u \alpha ~}[0,9]$.

$$
f^{\prime}(\xi)=\frac{f(4)-f(0)}{4-0}, \quad \delta \eta \lambda . \quad f^{\prime}(\xi)=-2
$$

$\Lambda \lambda \lambda \alpha, f^{\prime}(x)=-2 x+2, \forall x \in[0,4]$ к $\alpha, ~ \alpha \rho \alpha$

$$
f^{\prime}(\xi)=-2 \Leftrightarrow-2 \xi+2=-2 \Leftrightarrow \xi=2
$$

 $P(A \cap B)$:
${ }^{\prime} \mathrm{A} \rho \alpha$,

$$
P(A) \cdot P(B)=\frac{1}{6} \cdot \frac{1}{4}=\frac{1}{24}=P(A \cap B)
$$

$$
\frac{6!}{3!}=120
$$

$$
1 \cdot 12 \cdot 3=36
$$

6. $y^{2}=4 \alpha x, \alpha>0$ x $\alpha \iota \tau \alpha$ anusi $\alpha A\left(\alpha t^{2}, 2 \alpha t\right)$ x $\alpha t B\left(\alpha \rho^{2}, 2 \alpha \rho\right) \alpha u \tau \eta \dot{s}(t \neq \rho)$

$$
\lambda_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}=\frac{2 \alpha \rho-2 \alpha t}{\alpha \rho^{2}-\alpha t^{2}}=\frac{2 \alpha(\rho-t)}{\alpha(\rho-t)(\rho+t)}=\frac{2}{\rho+t}
$$

$\psi_{\alpha} \alpha \rho \alpha$

$$
(A B): y-y_{B}=\lambda_{A B}\left(x-x_{B}\right) \Leftrightarrow(A B): y-2 \alpha \rho=\frac{2}{\rho+t}\left(x-\alpha \rho^{2}\right) \Leftrightarrow(A B):(\rho+t) y-2 x=2 \alpha \rho t
$$

7. Eyouиe

$$
\left\{\begin{array}{c}
f^{\prime \prime}(x)-2 f^{\prime}(x)-8 f(x)=0, \forall x \in \mathbb{R} \\
f^{\prime}(0)=4, f(0)=1
\end{array}\right.
$$

(α) Eiv $\alpha \iota \forall x \in \mathbb{R} h(x)=f^{\prime}(x)+2 f(x) \Rightarrow h(x)=f^{\prime}(x)+2 f^{\prime}(x)$ к $\alpha \iota \alpha \rho \alpha$

$$
h(x)-4 h(x)=f^{\prime \prime}(x)+2 f^{\prime}(x)-4 f(x)-8 f(x)=f^{\prime \prime}(x)-2 f^{\prime}(x)-8 f(x)=0, \forall x \in \mathbb{R}
$$

$\alpha \pi o ́ ~ v \pi o ́ \theta \varepsilon \sigma \eta$.

$$
u(x)=\left(e^{-4 x} h(x)\right) \Rightarrow u(x)=-4 e^{-4 x} h(x)+e^{-4 x} h(x)=e^{-4 x} \underbrace{(h(x)-4 h(x))}_{=0}=0, \forall x \in \mathbb{R}
$$

 $\delta \eta \lambda . h(x)=c e^{4 x}, \forall x \in \mathbb{R} . А \lambda \lambda \alpha, h(0)=6$ к $\alpha \iota \alpha \rho \alpha c=6 . \Sigma v \nu \varepsilon \pi \omega \dot{\varsigma}$,

$$
u(x)=6 e^{4 x}, \forall x \in \mathbb{R}
$$

Eivat $\forall x \in \mathbb{R}$

$$
\left(e^{2 x} f(x)\right)=2 e^{2 x} f(x)+e^{2 x} f^{\prime}(x)=e^{2 x}(f(x)+2 f(x))=u(x) e^{2 x}=6 e^{4 x} \cdot e^{2 x}=6 e^{6 x}
$$

T $\omega \rho \alpha$,

$$
\left(e^{2 x} f(x)\right)=6 e^{6 x} \Rightarrow \int\left(e^{2 x} f(x)\right) d x=6 \int e^{6 x} d x \Rightarrow e^{2 x} f(x)=e^{6 x}+c \Rightarrow f(x)=e^{4 x}+c e^{-2 x}
$$

$\mathrm{A} \lambda \lambda \alpha, f(0)=1 \chi \alpha \downarrow \alpha \rho \alpha c+1=1, \delta \eta \lambda, c=0,{ }^{\prime}$ E $\tau \sigma \tau$,

$$
f(x)=e^{4 x}, \forall x \in \mathbb{R}
$$

(γ) Exоицв

$$
\sum_{k=0}^{\infty} f(-4 k)=\sum_{k=0}^{\infty} e^{-16 k}=\sum_{k=0}^{\infty} \frac{1}{e^{16 k}}=\sum_{k=0}^{\infty}\left(\frac{1}{e^{16}}\right)^{k}
$$

$$
\sum_{k=0}^{\infty}\left(\frac{1}{e^{16}}\right)^{k}=\frac{1}{1-\frac{1}{e^{16}}}=\frac{e^{16}}{e^{16}-1}
$$

$$
f^{\prime}(x)=\frac{\eta \mu x \sigma v \gamma x}{\left(2-\eta \mu^{2} x\right)^{\frac{3}{2}}}=\frac{\eta \mu(2 x)}{2\left(2-\eta \mu^{2} x\right)^{\frac{3}{2}}}
$$

$$
\begin{equation*}
\frac{\sqrt{2}}{2}=f(0) \leq f(x) \leq f\left(\frac{\pi}{2}\right)=1 \tag{*}
\end{equation*}
$$

$\delta \eta \lambda . f_{\text {mux }}=1$ x $\alpha t f_{\text {min }}=\frac{\sqrt{2}}{2}$.

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{2}}{2} d x \leq \int_{0}^{\frac{\pi}{2}} f(x) d x \leq \int_{0}^{\frac{\pi}{2}} d x
$$

$\lambda \lambda \lambda \alpha \dot{\alpha}$,

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{2}}{2} d x=\frac{\sqrt{3}}{3} \int_{0}^{\frac{\pi}{2}} d x=\frac{\sqrt{2}}{2} \cdot \frac{\pi}{2}=\frac{\pi \sqrt{2}}{4} \kappa \alpha t \int_{0}^{\frac{\pi}{2}} d x=\frac{\pi}{2}
$$

$x \alpha t \alpha \rho \alpha$

$$
\frac{\pi \sqrt{2}}{4} \leq \int_{0}^{\frac{\pi}{2}} f(x) d x \leq \frac{\pi}{2}
$$

9. Exouиع

$$
y=\ln \left(\frac{1}{x}\right)=-\ln x, x>0
$$

$$
y^{\prime}(x)=-\frac{1}{x}
$$

$$
y^{\prime}\left(\frac{1}{e}\right)=-e
$$

$$
y-1=-e\left(x-\frac{1}{e}\right)
$$

$\bar{\delta} \eta \lambda . \eta$

$$
y=2-e x
$$

$$
V=V_{1}-V_{2}=\pi \int_{\frac{1}{e}}^{1} y^{2} d x-\frac{(A M)^{2} \cdot(A B)}{3} \pi=\pi \int_{\frac{1}{e}}^{1} \ln ^{2} x d x-\frac{1^{2}}{3}\left(\frac{2}{e}-\frac{1}{e}\right) \pi
$$

$$
\int \ln ^{2} x d x=x \ln ^{2} x-2 x \ln x+2 x+c
$$

$x \alpha t \alpha \rho \alpha$

$$
V=\pi\left[x \ln ^{2} x-2 x \ln x+2 x\right]_{\frac{1}{e}}^{1}-\frac{\pi}{3 e}=\cdots=\pi\left(2-\frac{5}{e}-\frac{1}{3 e}\right) \kappa . \mu .
$$

10. Eival

$$
\int \frac{x^{2017}}{(x+1)^{2019}} d x=\int \frac{x^{2017}}{(x+1)^{2017}} \cdot \frac{1}{(x+1)^{2}} d x=\int\left(\frac{x}{x+1}\right)^{2017} \cdot \frac{1}{(x+1)^{2}} d x
$$

Пфрктппои́ци б́т兀 $\left(\frac{x}{x+1}\right)^{\prime}=\frac{1}{(x+1)^{2}} x \alpha \iota \alpha \rho \alpha$

$$
\int \frac{x^{2017}}{(x+1)^{2019}} d x=\int\left(\frac{x}{x+1}\right)^{2017} d\left(\frac{x}{x+1}\right)=\frac{1}{2017}\left(\frac{x}{x+1}\right)^{2018}+c
$$

A $\boldsymbol{\tau}$ ó $\tau о \beta \iota \beta \lambda$ ı́o

