MA®НМАТПKA

B＂Aukelou KareưOuvons

Mépo̧ II

\checkmark E $\pi \alpha \nu \alpha \dot{\alpha} \lambda \eta \psi \eta \alpha \pi$ то то Mépos I
\checkmark Акодои日ísऽ－АӨроí $\sigma \mu \alpha \tau$－Про́oסot

Гع由ицтрькоі́ То́тоь
\checkmark Поди́ү $\omega v \alpha / М \varepsilon ́ \tau \rho \eta \sigma \eta ~ к и ́ к \lambda о v ~$
$\checkmark \Sigma \tau \alpha \tau \iota \sigma \tau \iota \kappa \eta ́$
\checkmark T $\rho \iota \gamma \omega v$ оиєт $\rho \dot{\prime} \alpha$ II
ANAAYTIKH ӨE Ω PIA｜ПAPA $\triangle E I \Gamma M A T A ~ \mid ~ \Lambda Y M E N E \Sigma ~$ AKHEEIL

[^0]
ISBN 978-9925-7485-2-5

Suм

 Пעе

Ектйтьот:	
	piastr@cablenet.com.cy
	BIBAIOMתMELA 'TAPTA'
Eлu	
I waxzip L/Piastr Copy centre/	Sophocleous Bookshop
-	LOARNEION KENTPON BIBAIOY
Christos19896@gmail.com	BIBAIOח®AEIO 'PENOE ATPOTHE \& YIOE'
	ВІВАІОП®AEIO 'TO MAӨНTIKO'
	BIBAIOП®AEIO 'KП. KYPIAKOY'
	BIBAIOП』AELA 'KYRIAKOU FULLPAGE'

 $\varepsilon \chi \tau \sigma \varsigma \tau \eta \varsigma ~ \alpha i \theta$ оиб $\alpha \varsigma \delta t \delta \alpha \sigma \varkappa \alpha \lambda i \alpha \varsigma$.

Π По́入оүOऽ $1 \eta \varsigma$ є́xঠoons

 $\pi \lambda \alpha \iota \sigma i \omega \nu$.

Opro/ $\mathrm{Duvézerax}$ oovóprnorys
 ouvtponoms
email: yiannisioa@hotmail.com
Пivaxaç териехоиévढv
 17
 18
इovaןтท̆беレร 20
 24
 30
 34
 35
Т $\rho \gamma \omega \nu о и \varepsilon \tau \rho i \alpha$ 37
Aбxทุのะเц Euл $\lambda о 0 \tau \iota \sigma \mu \circ 0$ ． 40
Гev心és Aoxñasls Kepoxiocion 0. 46
 48
 49
Н $\alpha x \circ \lambda$ оиөí α zou Fibonacci 52
［1．2］Oplo ахо入ои日ías． 54
Movózoves α ходои日íes 54
Фраүи́́veऽ аходои日ís 60
$\Sigma o ́ \gamma \kappa \lambda \iota \sigma \eta$ Axодои日ías． 62
 69
［1．4］Etঠ̈xés аходои日ieऽ 72
 72
 79
 85
Tevués Aनxทีaels Kepoxciou I． 90
 93
 94
 102
［3．2］Н גоүкрьөицхй ооvќргทаท 107
Гevixés Aoxñoevs Keqoiatou II． 119
 120
 121
 126
 127
 127
 131
 134
 140
Kеррддоьо V • $\Sigma \tau \alpha \tau \iota \sigma \pi \times \eta$ ． 152
 155
 158
 162
То чидлоүод́ $\varphi \eta \mu \alpha$（stem and leaf diagram） 165
То өпиобүраии 165
 168
Гsvixés，Aбunioevs Keqox oiou IV 171
 173
 175
 177
3．2．1 То Т Т $\quad \rho \alpha \pi \lambda \lambda \varepsilon \rho \rho \circ$ 179
3．2．2 Еүү $ү \rho \alpha \mu \mu \varepsilon ́ v \alpha, ~ \varkappa \alpha \iota ~ \pi \varepsilon \rho \iota \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \alpha ~ \tau \varepsilon \tau \rho \alpha \pi \lambda \varepsilon \cup \rho \alpha$, 181
 182
 185
3．4 Ме́т $\rho \eta$ Øך хо́х入ои 190
 196
 197
 197
 197
 200
 205
 206
 210
 210
 213
$\Delta \rho \alpha \sigma \tau \eta \rho ⿺ 𠃊 ́ \tau \eta \tau \varepsilon \varsigma \sigma \varepsilon \lambda .87$（Oрьо Аходои日ías） 214
 216
 247
$\Delta \rho \alpha \sigma \tau \eta \rho t \not \check{\tau \eta \tau \varepsilon \varsigma ~ \sigma \varepsilon \lambda .102 \text {（Evó } 1 \eta \tau \alpha \varsigma) ~}$ 218
 224
 228
 228
$\Delta \rho \alpha \sigma \tau \eta \rho t \sigma \tau \eta \tau \varepsilon \varsigma ~ \sigma \varepsilon \lambda .115$ 228
 230
 232
 232
 235
 237
 244
 252
 252
 254
 259
$\Delta \rho \alpha \sigma \tau \eta \rho \iota \sigma \tau \eta \tau \varepsilon \varsigma \sigma \varepsilon \lambda .181$ ($\mathrm{A} \lambda \lambda \alpha \times \dot{\eta} \mathrm{B} \alpha \sigma \eta \zeta$) 260
 261
 264
 268
 268
 273
 279
 279
 281
 282
$\Delta \rho \alpha \sigma \tau \eta \rho t о \tau ท \tau \varepsilon \varsigma ~ \sigma \varepsilon \lambda .230$ (..... 284
 286
 287
 289
$\Delta \rho \alpha \sigma \tau \eta \rho เ о \tau \eta \tau \varepsilon \varsigma \sigma \varepsilon \lambda .246$ (Еvóтทг $\alpha \varsigma$) 292
 299
 299
 300

 302
$\Delta \rho \alpha \sigma \tau \eta \rho \stackrel{\delta}{\tau} \eta \tau \varepsilon \varsigma \sigma \varepsilon \lambda .156$ (Еvóгทุच $\alpha \varsigma)$ 303
 306
$\Pi \alpha \rho \alpha \rho \tau \eta и \alpha$ 309
 309
Bı $\beta \lambda$ гоү $\rho \propto \varphi i \alpha$ 332

Mépous I

$=3.141 \%$

$$
(1+\alpha)^{n} \geq 1+n \cdot a+\frac{n \cdot(n-1)}{2} \cdot a^{2}
$$

^óon

B $\operatorname{nj}_{\mu} 1$

B $\eta \mu \alpha 2$

 Порогпрйоте óvь $\alpha \geq 0 \Rightarrow a^{3} \geq 0$.
Eरoupe

$$
\begin{align*}
(1+\alpha)^{k+1} & =\underbrace{(1+\alpha)^{k}}_{\geq 1+k \cdot a+\frac{k \cdot(x-1)}{2} a^{2}} \cdot(1+\alpha) \\
& \geq\left[1+k \cdot a+\frac{k \cdot(k-1)}{2} \cdot a^{2}\right] \cdot(1+\alpha) \\
& =1+k \cdot a+\frac{k \cdot(k-1)}{2} \cdot a^{2}+\alpha+k \cdot a^{2}+\underbrace{\frac{k \cdot(k-1)}{2} \cdot a^{3}}_{\geq 0} \\
& \geq 1+k \cdot a+\frac{k \cdot(k-1)}{2} \cdot a^{2}+\alpha+k \cdot a^{2} \tag{1}
\end{align*}
$$

A $\lambda \lambda \alpha$,

$$
\frac{k \cdot(k-1)}{2} \cdot a^{2}+k \cdot a^{2}=a^{2}\left[\frac{k \cdot(k-1)}{2}+k\right]=a^{2} \frac{k \cdot(k+1)}{2}(2)
$$

$$
(1+\alpha)^{k+1} \geq 1+k \cdot a+a^{2} \frac{k \cdot(k+1)}{2}+\alpha=1+(k+1) \alpha+a^{2} \frac{k \cdot(k+1)}{2}
$$

B \quad भ $\mu \alpha 3$

[Avifowon row Bernoulli]

2. Е $\sigma \tau \omega 1$. Tó $a \geq \forall n \in \mathbb{N},(1+\alpha)^{n} \geq 1+n, a$.

^úon

B \quad น $\mu 1$

 - σ órño

B \quad น $\mu 2$

$$
(1+\alpha)^{k} \geq 1+k \cdot a
$$

$$
(1+\alpha)^{k+1} \geq 1+(1+k) \cdot a
$$

${ }^{\prime}$ Exoune

$$
\begin{gathered}
(1+\alpha)^{k+1}=\underbrace{(1+\alpha)^{k}}_{\geq 1+k \cdot a} \cdot(1+\alpha) \geq(1+k \cdot a) \cdot(1+\alpha) \\
=1+k \cdot a+\alpha+k \cdot a^{2}=1+\alpha \cdot(1+\kappa)+\underbrace{k \cdot a^{2}}_{\geq 0} \geq 1+\alpha \cdot(1+k)
\end{gathered}
$$

B \quad д $\mu \alpha$

3.

Av $\alpha>1$ « $\alpha, \forall n \in \mathbb{N}$ ，eival $(1-\alpha)^{n} \geq 1-n \cdot a$

\ươ

［Me eroүळүท́n oго n ］

Bทีนaと 1

 เのо́тที α ．

Bグци又 2

$$
(1-\alpha)^{k} \geq 1-k \cdot a
$$

$$
(1-\alpha)^{k+1} \geq 1-(\kappa+1) \cdot a
$$

${ }^{\prime}$ Exovue

$$
\begin{gathered}
\quad(1-\alpha)^{k+1}=\underbrace{(1-\alpha)^{k}}_{\geq 1+k \cdot a} \cdot(1-\alpha) \geq(1-k \cdot a) \cdot(1-\alpha) \\
=1-k \cdot a-\alpha+k \cdot a^{2}=1-\alpha \cdot(k+1)+\underbrace{k \cdot a^{2}}_{\geq 0} \geq 1-\alpha \cdot(k+1)
\end{gathered}
$$

Bグца 3

4.

núon

 $\sigma \pi t$

$$
\alpha=2 \mu+1 \kappa \alpha \iota \beta=2 \lambda+1, \gamma \text { रı ко́лоьоия } \mu, \lambda \in \mathbb{Z}
$$

Tớ ε,

$$
c^{2}=\alpha^{2}+\beta^{2}=(2 \mu+1)^{2}+(2 \lambda+1)^{2}=2 \cdot\left[2\left(\mu^{2}+\lambda \mu+\lambda^{2}\right)+1\right]
$$

$$
c^{2}=(2 \xi)^{2}=2 \cdot\left[2\left(\mu^{2}+\lambda \mu+\lambda^{2}\right)+1\right]
$$

इuvapr्ञाozıs

(α)

(β)

(γ)

(8)

(E)

($\sigma \tau)$

Aóon
(a)
П.О.: $(0,+\infty)$
(β)
П.О.: \mathbb{R}
(ү) \quad п. $:=\mathbb{R}$
п.Т.: $\left[-\frac{1}{e},+\infty\right)$
п.Т.: $[-e,+\infty)$
п.Т.: $(0,1]$
(8)

> П.О.: \mathbb{R}
> П.Т.: $\left[-\frac{1}{e},+\infty\right)$
(ع) $\quad \Pi .0 .: \mathbb{R}-\{0,3\}$
П.Т.: \mathbb{R}
(σ) \quad п. $0 .: ~: \mathbb{R}-\{0\}$
П.Т.: $(-\infty,-2] \cup[2,+\infty)$

(α) $f(x)=x^{2}+3 x-1, x \in \mathbb{R}$
(阝) $f(x)=\frac{x^{2}+4}{x+2}, x \in \mathbb{R}-\{-2\}$
($\boldsymbol{\gamma}) f(x)=\frac{1}{|x|+2}, x \in \mathbb{R}$

^úon

Eíval

$$
\begin{aligned}
& y=x^{2}+3 x-1 \quad \Leftrightarrow x^{2}+3 x-1-y=0
\end{aligned}
$$

$$
\Delta \geq 0 \Leftrightarrow 9+4(1+y) \geq 0 \Leftrightarrow y \geq-\frac{13}{4}
$$

$$
x_{1,2}=\frac{5 \pm \sqrt{25-4(2+y)}}{2}=\frac{-3 \pm \sqrt{13+4 y}}{2}
$$

Eivol

$$
f(x)=x^{2}+3 x-1=\left(x-\frac{3}{2}\right)^{2}-\frac{13}{4}
$$

(β) $f(x)=\frac{x^{2}+4}{x+2}$.

$$
\left.\begin{array}{l}
\qquad y=\frac{x^{2}+4}{x+2}
\end{array}\right) \Leftrightarrow y(x+2)=x^{2}+4 .
$$

 tou $\nu \alpha$ slvou ≥ 0 :

$$
\Delta \geq 0 \Leftrightarrow y^{2}-4(4-2 y) \geq 0 \Leftrightarrow y^{2}+8 y-16 \geq 0
$$

 $\delta \iota \alpha \sigma \tau \eta \cup \alpha(-\infty,-4(1+\sqrt{2})] \cup[4(1+\sqrt{2}),+\infty)$.

$$
f(x)=\frac{1}{|x|+2}=\left\{\begin{array}{l}
\frac{1}{x+2}, \alpha v x \geq 0 \\
\frac{1}{2-x}, \alpha v x<0
\end{array}\right.
$$

A $\rho \alpha$,

(α) $f(x)=|x+2| \quad$ x $\alpha \boldsymbol{\iota}$ (β) $h(x)=|x+2|-x$

पưon

(6) $\quad \Gamma \alpha x \geq-2, f(x)=2 \Rightarrow f([-2,+\infty))=\{2\}$
0. $\Gamma\llcorner\alpha x<-2, f(x)=2-2 x$. A $\lambda \lambda \alpha, x<-2 \Rightarrow-2 x>4 \Rightarrow 2-2 x>6 \Rightarrow f((-\infty,-2))=(6, \infty)$

^úon

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow \sqrt{x_{1}+2}=\sqrt{x_{2}+2} \Leftrightarrow x_{1}=x_{2}
$$

$$
y=\sqrt{x+2} \Leftrightarrow y^{2}=x+2 \Leftrightarrow x=y^{2}-2
$$

$x \propto \iota \alpha \rho \propto \eta f^{-1}$ вivalı $\eta g:[0,+\infty) \rightarrow[-2,+\infty)$ цє $g(x)=x^{2}-2$

(a) $\quad f(x)=3 x-1, x \in \mathbb{R}$
(ß) $\quad f(x)=x^{2}+1, \quad x \in \mathbb{R}$
(Y) $\quad f(x)=x^{3}-2, \quad x \in \mathbb{R}$
(8) $f(x)=-\frac{1}{x^{2}}, \quad x>0$

पर́oŋ
 'Exouye

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow 3 x_{1}-1=3 x_{2}-1 \Leftrightarrow 3 x_{1}=3 x_{2} \Leftrightarrow x_{1}=x_{2}
$$

 ${ }^{\prime}$ Eyouиع

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}^{3}-2=x_{2}^{3}-2 \Leftrightarrow x_{1}^{3}-x_{2}^{3}=0 \Leftrightarrow\left(x_{1}-x_{2}\right)\left(x_{1}^{2}+x_{1} x_{2}+x_{1}^{3}\right)=0 \Leftrightarrow x_{1}=x_{2}
$$

 ${ }^{\prime}$ Exouче

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow \frac{1}{x_{1}^{2}}=\frac{1}{x_{2}^{2}} \Leftrightarrow x_{1}^{2}=x_{2}^{2} \stackrel{x_{1}, x_{2}>0}{\Longleftrightarrow} x_{1}=x_{2}
$$

$$
f(x)+f\left(\frac{1}{x}\right)=0
$$

^óơn

${ }^{\prime} \operatorname{E} \sigma \tau \omega \mathrm{x} \in \mathbb{R}-\{0\}$. Tó τ

$$
f(x)+f\left(\frac{1}{x}\right)=x^{3}-\frac{1}{x^{3}}+\left(\frac{1}{x}\right)^{3}-\frac{1}{\left(\frac{1}{x}\right)^{3}}=x^{3}-\frac{1}{x^{3}}+\frac{1}{x^{3}}-x^{3}=0
$$

$$
f(x)=(3 \sqrt{5}-2 \sqrt{11})^{x}-(3 \sqrt{5}+2 \sqrt{11})^{x}, \quad x \in \mathbb{R}
$$

রơon
$x \in \mathbb{R} \Rightarrow(-x) \in \mathbb{R} x \alpha \iota \forall x \in \mathbb{R}$,

$$
\begin{aligned}
f(-x) & =(3 \sqrt{5}-2 \sqrt{11})^{-x}-(3 \sqrt{5}+2 \sqrt{11})^{-x} \\
& =\frac{1}{(3 \sqrt{5}-2 \sqrt{11})^{x}}-\frac{1}{(3 \sqrt{5}+2 \sqrt{11})^{x}} \\
& =\frac{(3 \sqrt{5}+2 \sqrt{11})^{x}-(3 \sqrt{5}-2 \sqrt{11})^{x}}{(3 \sqrt{5}-2 \sqrt{11})^{x} \cdot(3 \sqrt{5}+2 \sqrt{11})^{x}} \\
& =\frac{(3 \sqrt{5}+3 \sqrt{3})^{x}-(3 \sqrt{5}-2 \sqrt{11})^{x}}{[(3 \sqrt{5}-2 \sqrt{11}) \cdot(3 \sqrt{5}+2 \sqrt{11})]^{x}} \\
(3 \sqrt{5}-2 \sqrt{11}) \cdot(3 \sqrt{5}+2 \sqrt{11})=\Rightarrow & =(3 \sqrt{5}+3 \sqrt{3})^{x}-(3 \sqrt{5}-2 \sqrt{11})^{x}=-f(x)
\end{aligned}
$$

 $\lim _{x \rightarrow x_{0}} f(x)$.

Aúon

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)=2
$$

 $\alpha \rho \alpha$

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)=1
$$

 $2 c-1=1, \delta \eta \lambda . \boldsymbol{c}=\mathbf{1}$.

núon

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{((x+h)-3)^{2}-(x-3)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{((x+h)-3)^{2}-(x-3)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-6(x+h)+9-(x-3)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-6 x-6 h+9-x^{2}+6 x-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-6 h}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h-6)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-6)=2 x-6=2(x-3)
\end{aligned}
$$

$$
f^{\prime}(x)=2(x-3), \quad \forall x \in \mathbb{R}
$$

 ($\sigma v y \dot{\alpha} \rho \tau_{n} \sigma_{\eta}$) चทs $f(x)=\frac{1}{x+4}, x \neq-4$

^úon

$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)+4}-\frac{1}{x+4}}{h}=\lim _{h \rightarrow 0} \frac{\frac{x+4-[(x+h)+4]}{(x+h+4) \cdot(x+4)}}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x+4-x-h-4}{h \cdot(x+h+4)(x+4)}=\lim _{h \rightarrow 0} \frac{-h}{h \cdot(x+h+4)(x+4)} \\
& =-\lim _{h \rightarrow 0} \frac{h}{h \cdot(x+h+4)(x+4)}=-\lim _{h \rightarrow 0} \frac{1}{(x+h+4)(x+4)} \\
& =-\frac{1}{(x+4)(x+4)}=-\frac{1}{(x+4)^{2}}
\end{aligned}
$$

 $\sqrt{\eta \mu x}, x \in(0, \pi)$ бтоט $\alpha v \tau \eta \quad \nu \pi \alpha, \rho \chi \varepsilon L$.

Aúon

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{\eta \mu(x+h)}-\sqrt{\eta \mu x}}{h} \\
& \text { Hoguntis maporaranar } \\
& =\quad \lim _{h \rightarrow 0} \frac{(\sqrt{\eta \mu(x+h)}-\sqrt{\eta \mu x})(\sqrt{\eta \mu(x+h)}+\sqrt{\eta \mu x})}{h \cdot(\sqrt{\eta \mu(x+h)}+\sqrt{\eta \mu x})} \\
& =\quad \lim _{h \rightarrow 0} \frac{\eta \mu(x+h)-\eta \mu x}{h-(\sqrt{\eta \mu(x+h)}+\sqrt{\eta \mu x})} \\
& =2 \cdot \lim _{h \rightarrow 0} \frac{\sigma u\left(\frac{x+h+x}{2}\right) \cdot \eta \mu\left(\frac{x+h-x}{2}\right)}{h \cdot(\sqrt{\eta \mu(x+h)}+\sqrt{\eta \mu x})} \\
& =\quad \lim _{h \rightarrow 0} \frac{\sigma v\left(\frac{2 x+h}{2}\right) \cdot \eta \mu\left(\frac{h}{2}\right)}{\frac{h}{2} \cdot(\sqrt{\eta \mu(x+h)}+\sqrt{\eta \mu x})} \\
& =\left(\lim _{h \rightarrow 0} \frac{\eta \mu\left(\frac{h}{2}\right)}{\frac{h}{2}}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{\sigma v v\left(\frac{2 x+h}{2}\right)}{\sqrt{\eta \mu(x+h)}+\sqrt{\eta \mu x}}\right) \\
& \lim _{h \rightarrow 0} \frac{\eta \mu\left(\frac{h}{2}\right)}{\frac{h}{2}}=\lim _{\frac{h}{2}, 0} \frac{\eta \mu\left(\frac{h}{2}\right)}{\frac{h}{2}}=1 \quad=\lim _{h \rightarrow 0} \frac{\sigma \nu v\left(\frac{2 x+h}{2}\right)}{\sqrt{\eta \mu(x+h)}+\sqrt{\eta \mu x}}=\frac{\sigma \nu v\left(\frac{2 x}{2}\right)}{\sqrt{\eta \mu x}+\sqrt{\eta \mu x}} \\
& =\frac{\sigma v \nu x}{2 \sqrt{\eta \mu x}}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{\sigma v \nu x}{2 \sqrt{\eta \mu x}}, \quad \forall x \in(0, \pi)
$$

5.

^úon
(α) Eivos $\forall x \in \mathbb{R} f^{\prime}(x)=3 x^{2}-10 x+6 x \alpha \iota \alpha \rho \alpha$

$$
f^{\prime}(x)=0 \Leftrightarrow 3 x^{2}-10 x+6=0 \Leftrightarrow x_{1,2}=\frac{5 \pm \sqrt{7}}{3}
$$

(β) Etval $\forall x \in \mathbb{R}, f^{\prime}(x)=e^{x}+5 \cdot e^{-x}-6$
$\psi \alpha, \alpha \rho \alpha$

$$
f^{\prime}(x)=0 \Leftrightarrow e^{x}+5 \cdot e^{-x}-6=0 \Leftrightarrow e^{2 x}-6 e^{x}+5=0
$$

$$
w_{1}=5 \Leftrightarrow e^{x}=5 \Leftrightarrow x=\ln 5
$$

$x \propto$

$$
w_{2}=1 \Leftrightarrow e^{x}=1 \Leftrightarrow x=0
$$

Av $y(x)=\frac{e^{3 x}+e^{-3 x}}{e^{3 x}-e^{-3 x}}(x \neq 0), \nu \alpha$ ठぇ $\dot{\xi} \xi \tau \varepsilon$ ó τt
6.

$$
\frac{d y}{d x}=-\frac{12 e^{6 x}}{\left(e^{6 x}-1\right)^{2}}
$$

Núor

$\Gamma \iota \alpha=0$ عiv α,

$$
\begin{aligned}
y=\frac{e^{3 x}+e^{-3 x}}{e^{3 x}-e^{-3 x}} \Rightarrow \frac{d y}{d x} & =\frac{\left(e^{3 x}+e^{-3 x}\right)^{\prime} \cdot\left(e^{3 x}-e^{-3 x}\right)-\left(e^{3 x}-e^{-3 x}\right)^{\prime} \cdot\left(e^{3 x}-e^{-3 x}\right)}{\left(e^{3 x}-e^{-3 x}\right)^{2}} \\
& =\frac{\left(3 e^{3 x}-3 e^{-3 x}\right) \cdot\left(e^{3 x}-e^{-3 x}\right)-\left(3 e^{3 x}+3 e^{-3 x}\right) \cdot\left(e^{3 x}+e^{-3 x}\right)}{\left(e^{3 x}-e^{-3 x}\right)^{2}} \\
& =3 \frac{\left(e^{3 x}-e^{-3 x}\right) \cdot\left(e^{3 x}-e^{-3 x}\right)-\left(e^{3 x}+e^{-3 x}\right) \cdot\left(e^{3 x}+e^{-3 x}\right)}{\left(e^{3 x}-e^{-3 x}\right)^{2}} \\
& =3 \frac{\left(e^{3 x}-e^{-3 x}\right)^{2}-\left(e^{3 x}+e^{-3 x}\right)^{2}}{\left(e^{3 x}-e^{-3 x}\right)^{2}} \\
& =3 \frac{\left[\left(e^{3 x}-e^{-3 x}\right)-\left(e^{3 x}+e^{-3 x}\right)\right] \cdot\left[\left(e^{3 x}-e^{-3 x}\right)+\left(e^{3 x}+e^{-3 x}\right)\right]}{\left(e^{3 x}-e^{-3 x}\right)^{2}} \\
& =3 \frac{-2 e^{-3 x}-2 e^{3 x}}{\left(e^{3 x}-e^{-3 x}\right)^{2}}=-\frac{12}{\left(e^{3 x}-e^{-3 x}\right)^{2}} \\
& =-\frac{12}{\left(e^{3 x}-\frac{1}{e^{3 x}}\right)^{2}}=-\frac{12}{\left(\frac{e^{6 x}-1}{e^{3 x}}\right)^{2}}=-\frac{12 e^{6 x}}{\left(e^{6 x}-1\right)^{2}}
\end{aligned}
$$

7.

$$
\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=0
$$

$\alpha \lambda \lambda \alpha \eta f^{\prime}(0) \delta \varepsilon v \quad v \pi \alpha \rho \chi \varepsilon \leqslant$.
पúon
EívoL $f^{\prime}(x)=2 x, \forall x \in \mathbb{R}_{*} x \alpha \iota \quad \alpha \rho \alpha$

$$
\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=0 .
$$

Opos, ท f סev efvort ouvexh̆s $\sigma \tau 0 x=0$:

$$
\lim _{h \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0^{+}}\left(x^{2}+1\right)=1
$$

$\varepsilon \nu \omega$

$$
\lim _{h \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0^{-}} x^{2}=0
$$

${ }^{\prime}$ E $\tau \sigma \iota, \eta f^{\prime}(0) \delta \varepsilon v \quad 0 \pi \alpha, \rho \chi \varepsilon \iota$.
 8．$\sigma \tau \eta \nu \pi \leftarrow \alpha \pi \lambda \eta \dot{\eta} \tau \eta ร \mu \circ \rho \varphi \dot{\eta})$
（a）$\quad f(x)=-3 x^{2}+\ln x-2 \operatorname{\sigma vv}(x)$
（B）$\quad f(x)=e^{2 x} \varepsilon \varphi(x)-2018 x$
（r）$\quad f(x)=\frac{2 x^{2}-3 x}{x-1}$
（8）$\quad f(x)=\sqrt{\left(x^{2}+3\right)^{4}}$
（e）$f(x)=\ln ^{2}\left[\left(\frac{x-1}{x^{2}+1}\right)^{3}\right]-\eta \mu(x)$
（ σ ）$\quad f(x)=\frac{2 \sigma v v(x)}{\sigma \omega v(x)+\eta \mu(x)}$
（弓）$f(x)=-\frac{2}{(x-2)^{2}}+\varepsilon \varphi(2 x)-3 e^{-x^{2}+1}$
（n）$f(x)=\sqrt{\frac{e^{x}+2}{e^{-x}+1}}$
（0）$\quad f(x)=\left(\frac{\tau \varepsilon \mu(x)-3 x^{4}}{e^{x^{2}}+1}\right)^{5}$
＾úō
（a） $\begin{aligned} f^{\prime}(x)=2 \eta \mu x-6 x+\frac{1}{x}, x \\ >0\end{aligned}$
（ß）$\quad f^{\prime}(x)=e^{2 x}\left[2 \varepsilon \varphi(x)-\tau \varepsilon \mu^{2} x\right]-2018$
$(\gamma) \quad f^{\prime}(x)=\frac{2 x^{2}-4 x+3}{(x-1)^{2}}(x$
（8）$\quad f^{\prime}(x)=4 x\left(x^{2}+3\right)$
（c）$\quad f^{\prime}(x)=-4 \frac{\left(x^{2}-2 x-1\right) \cdot \ln ^{3}\left(\frac{x-1}{x^{2}+1}\right)}{(x-1) \cdot\left(x^{2}+1\right)}-\operatorname{\sigma vv}(x)(x \neq 1)$
（or）$\quad f^{\prime}(x)=-\frac{2}{\eta \mu(2 x)+1}, \quad\left(x \neq k \pi+\frac{\pi}{4}, \quad \kappa \in \mathbb{Z}\right)$
（り）$f^{\prime}(x)=2 \tau \varepsilon \mu^{2}(2 x)+6 x e^{-x^{2}+1}+\frac{4}{(x-2)^{3}}(x \neq 2)$
（ท）$\quad f^{\prime}(x)=\frac{e^{-x}\left(e^{2 x}+2 e^{x}+2\right)}{2\left(e^{-x}+1\right)^{3 / 2} \sqrt{e^{x}+2}}$
ө）$\quad f^{\prime}(x)=\frac{\left(\tau \varepsilon \mu^{2} x-3 x^{4}\right)^{4} \cdot\left[5\left(e^{x^{2}}+1\right)\left(2 \tau \varepsilon \mu^{2} x \cdot \varepsilon \varphi x-12 x^{3}\right)-10 x e^{x^{2}}\right]}{\left(e^{x^{2}}+1\right)^{6}}$
9．Av $y=\frac{(x-2)^{2} \sqrt{x-3}}{\sqrt[3]{x^{2}+5}} \quad$ ，α ß ßєiт $\tau \eta y \frac{d y}{d x}$

ムúvŋุ

$$
\begin{aligned}
& y=\frac{(x-2)^{2} \cdot \sqrt{x-3}}{\sqrt[3]{x^{2}+5}} \\
& \Rightarrow \ln y=\ln \frac{(x-2)^{2} \cdot \sqrt{x-3}}{\sqrt[3]{x^{2}+5}} \\
& \Rightarrow \ln y=2 \ln (x-2)+\frac{1}{2} \ln (x-3)-\frac{1}{3} \ln \left(x^{2}+5\right)
\end{aligned}
$$

 $\mu E \lambda \eta$

$$
\begin{aligned}
& \Rightarrow(\ln y)=\left(2 \ln (x-2)+\frac{1}{2} \ln (x-3)-\frac{1}{3} \ln \left(x^{2}+5\right)\right)^{\prime} \\
& \Rightarrow \frac{y^{\prime}}{y}=\frac{2}{x-2}+\frac{1}{2} \frac{1}{x-3}-\frac{2}{3} \frac{1}{x^{2}+5} \\
& \Rightarrow y^{\prime}=y \cdot\left(\frac{2}{x-2}+\frac{1}{2} \frac{1}{x-3}-\frac{2}{3} \frac{1}{x^{2}+5}\right) \\
& =\frac{(x-2)^{2} \sqrt{x-3}}{\sqrt[3]{x^{2}+5}} \cdot\left(\frac{2}{x-2}+\frac{1}{2} \cdot \frac{1}{x-3}-\frac{2}{3} \frac{1}{x^{2}+5}\right)
\end{aligned}
$$

 μ MM M

Aоverpe us mpos y'

 x $\left\llcorner\left\llcorner\not \subset \cup \varepsilon \iota ~ f^{\prime}(\xi)=f(\xi) \cdot f^{\prime}(0)\right.\right.$.

ムúon

$$
\begin{align*}
& \lim _{h \rightarrow 0} \frac{f(\xi+h)-f(\xi)}{h}=\lim _{h \rightarrow 0} \frac{f(\zeta) \cdot f(h)-f(\xi)}{h}=\lim _{h \rightarrow 0} \frac{f(\xi)-(f(h)-1)}{h} \\
& =f(\zeta) \cdot \lim _{h \rightarrow 0} \frac{f(h)-\overline{1}}{h}=f(\zeta) \cdot \underbrace{\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}}_{=f(0)}=f(\zeta) \cdot f^{\prime}(0) \tag{0}
\end{align*}
$$

$x \alpha \iota \alpha \rho \alpha v \pi \alpha \rho \neq \varepsilon \iota f^{\prime}(\xi) \times \alpha \iota \iota \sigma \chi^{0 \prime \varepsilon \iota} f^{\prime}(\xi)=f(\xi) \cdot f^{\prime}(0)$.

11.

$$
f(x)= \begin{cases}4 x^{3}-(2 k+1) x, & x \geq 1 \\ (\kappa+3) x-3 k, & x<1\end{cases}
$$

पúon

 $\alpha v \tau \delta, \delta \eta \lambda ., \pi \rho \varepsilon ́ \pi \varepsilon \iota \lim _{x \rightarrow 1} f(x)=f(1)$. 'Exoטuє

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left[4 x^{3}-(2 k+1) x\right]=4 \cdot 1^{3}-(2 k+1)-1=3-2 k
$$

$x \alpha$.

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}[(\kappa+3) x-3 k]=(\kappa+3) \cdot 1-3 \kappa=3-2 k
$$

 б ρ, α

$$
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h} \kappa \alpha \mathrm{t} \lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}
$$

$$
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{4(1+h)^{3}-(2 \kappa+1)(1+h)-(3-2 k)}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{+}} \frac{4\left(1+3 h^{2}+3 h+h^{3}\right)-(2 \kappa+2 \kappa h+1+h)-3+2 k}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{4+12 h^{2}+12 h+h^{3}-2 \kappa-2 \kappa h-1-h-3+2 k}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{12 h^{2}+h^{3}+11 h-2 \kappa h}{h}=\lim _{h \rightarrow 0^{+}} \frac{\left(12 h+h^{2}+11-2 k\right) h}{h} \\
& =\lim _{h \rightarrow 0^{+}}\left(12 h+h^{2}+11-2 \kappa\right)=11-2 k
\end{aligned}
$$

rat

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{(k+3)(1+h)-3 k-(3-2 k)}{h}=\lim _{h \rightarrow 0^{-}} \frac{\kappa+k h+3+3 h-3 k-3+2 k}{h} \\
& =\lim _{h \rightarrow 0^{-}} \frac{k h+3 h}{h}=\lim _{h \rightarrow 0^{-}} \frac{h(k+3)}{h}=\lim _{h \rightarrow 0^{-}}(k+3)=k+3
\end{aligned}
$$

'E $\mathrm{E} \sigma \mathrm{L}$,

$$
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h} \Leftrightarrow 11-2 k=k+3 \Leftrightarrow k=\frac{8}{3}
$$

 $[f(x)]^{3}-x[f(x)]^{2}+x^{2} f(x)=x^{2} \cdot e^{x}$.
$N \alpha \delta \varepsilon i \xi \varepsilon \tau \varepsilon \delta \sigma \tau f^{\prime}(0)=\frac{1}{3}$.

Aúon

$$
\begin{aligned}
g^{\prime}(x)=\left(f(x) \cdot e^{-x}\right)^{\prime}=f^{\prime}(x) \cdot e^{-x} & +f(x) \cdot\left(e^{-x}\right)^{\prime}=f^{\prime}(x) \cdot e^{-x}-f(x) \cdot e^{-x} \\
f^{\prime}(x) & =f(x) \\
& =\quad f(x) \cdot e^{-x}-f(x) \cdot e^{-x}=0
\end{aligned}
$$

(β) Exочи $\gamma<\alpha, \chi \alpha \theta \varepsilon x \in \mathbb{R}$

$$
\begin{aligned}
& {[f(x)]^{3}-x[f(x)]^{2}+x^{2} f(x)=x^{2} e^{x}} \\
& \begin{array}{r}
\quad 3[f(x)]^{2} f^{\prime}(x)-[f(x)]^{2}-2 x f(x) f^{\prime}(x) \\
+2 x f(x)+x^{2} f^{\prime}(x)
\end{array} \quad=\quad 2 x e^{x}+x^{2} e^{x} \\
& \Rightarrow \quad f^{\prime}(x)\left[3[f(x)]^{2}-2 x f(x)+x^{2}\right] \quad=\quad 2 x e^{x}+x^{2} e^{x}+[f(x)]^{2}-2 x f(x) \\
& \Rightarrow \quad f^{\prime}(0) \cdot\left[3[f(0)]^{2}-2 \cdot 0 f(0)+0^{2}\right] \quad=\quad 2 \cdot 0 \cdot e^{0}+0^{2} \cdot e^{0}+[f(0)]^{2} \\
& \Rightarrow \quad f^{\prime}(0) \cdot 3[f(0)]^{2}=[f(0)]^{2} \quad r(0) \neq 0 \quad f^{\prime}(0)=\frac{[f(0)]^{2}}{3[f(0)]^{2}}=\frac{1}{3}
\end{aligned}
$$

nưon

$$
g(x)=(f o h)(x)
$$

$$
\begin{aligned}
& \frac{d g}{d x}=(f o h)^{\prime}(x)=f^{\prime}(h(x))-h^{\prime}(x)=\sigma v v\left(h^{2}(x)\right) \cdot\left(\frac{x}{x+1}\right)=\operatorname{\sigma vv}\left(h^{2}(x)\right) \cdot\left(\frac{x}{x+1}\right)^{\prime} \\
& =\operatorname{\sigma vv}\left(h^{2}(x)\right) \cdot \frac{(x)^{\prime} \cdot(x+1)-(x+1)^{\prime} \cdot x}{(x+1)^{2}}=\sigma \operatorname{\sigma v}\left(h^{2}(x)\right) \cdot \frac{x+1-x}{(x+1)^{2}}=\frac{\sigma v v\left(h^{2}(x)\right)}{(x+1)^{2}}=\frac{\sigma v v\left(\left(\frac{x}{x+1}\right)^{2}\right)}{(x+1)^{2}}
\end{aligned}
$$

Av $y=\ln \sqrt{5-2 x^{3}}, \nu \alpha \delta \varepsilon \xi \varepsilon \tau \varepsilon \delta \tau 1$

1. (α) $e^{2 y} \cdot \frac{d y}{d x}+3 x^{2}=0$
(阝) $\quad \frac{d^{2} y}{d x^{2}}+2 \cdot\left(\frac{d y}{d x}\right)^{2}+6 x e^{-2 y}=0$
ムúon

$$
\frac{d y}{d x}=\frac{3 x^{2}}{2 x^{3}-5} \kappa \alpha t \frac{d^{2} y}{d x^{2}}=-\frac{6 x\left(x^{3}+5\right)}{\left(2 x^{3}-5\right)^{2}}, \quad \forall x \in\left(-\infty, \sqrt[3]{\frac{5}{2}}\right]
$$

Eлion5,

$$
e^{2 y}=e^{2 \ln \sqrt{5-2 x^{3}}}=e^{\ln \left(\sqrt{5-2 x^{3}}\right)^{2}}=e^{\ln \left(5-2 x^{3}\right)}=5-2 x^{3}
$$

$x \propto 1$ оноícs

$$
e^{-2 y}=\frac{1}{5-2 x^{3}}
$$

$x \alpha \iota \alpha \rho \alpha$
(α) $\quad e^{2 y} \cdot \frac{d y}{d x}+3 x^{2}=\left(5-2 x^{3}\right) \cdot \frac{3 x^{2}}{2 x^{3}-5}+3 x^{2}=-3 x^{2}+3 x^{2}=0$.
(ß)

$$
\frac{d^{2} y}{d x^{2}}+2 \cdot\left(\frac{d y}{d x}\right)^{2}+6 x e^{-2 y}=-\frac{6 x\left(x^{3}+5\right)}{\left(2 x^{3}-5\right)^{2}}+2 \cdot\left(\frac{3 x^{2}}{2 x^{3}-5}\right)^{2}+\frac{6 x}{5-2 x^{3}}=\cdots=0
$$

$$
\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

2. $\Delta \varepsilon \epsilon \tau \varepsilon \delta \tau t$

$$
\frac{d^{4} y}{d x^{4}}=\left(4 x^{2}+2\right) \frac{d^{2} y}{d x^{2}}
$$

^úoŋ

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0 \quad \Leftrightarrow \quad \frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y\right)=0 \\
& \Leftrightarrow \quad \frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)+\frac{d}{d x}\left(-2 x \frac{d y}{d x}\right)+\frac{d}{d x}(2 y)=0 \\
& \Leftrightarrow \quad \frac{d^{3} y}{d x^{3}}-2 \frac{d}{d x}\left(x \frac{d y}{d x}\right)+2 \frac{d y}{d x}=0 \\
& \Leftrightarrow \quad \frac{d^{3} y}{d x^{3}}-2\left(\frac{d y}{d x}+x \frac{d^{2} y}{d x^{2}}\right)+2 \frac{d y}{d x}=0 \\
& \Leftrightarrow \quad \frac{d^{3} y}{d x^{3}}-2 x \frac{d^{2} y}{d x^{2}}=0 \Leftrightarrow \frac{d^{3} y}{d x^{3}}=2 x \frac{d^{2} y}{d x^{2}} \\
& \Leftrightarrow \quad \frac{d^{4} y}{d x^{4}}=2 \frac{d}{d x}\left(x \frac{d^{2} y}{d x^{2}}\right) \\
& \Leftrightarrow \quad \frac{d^{4} y}{d x^{4}}=2\left(\frac{d^{2} y}{d x^{2}}+x \frac{d^{3} y}{d x^{3}}\right) \\
& \frac{d^{3} y}{d x^{3}}=2 x \frac{d^{2} y}{d x^{2}} \\
& \Leftrightarrow \quad \frac{d^{4} y}{d x^{4}}=2\left(\frac{d^{2} y}{d x^{2}}+x 2 x \frac{d^{2} y}{d x^{2}}\right) \\
& \Leftrightarrow \quad \frac{d^{4} y}{d x^{4}}=\left(4 x^{2}+2\right) \frac{d^{2} y}{d x^{2}}
\end{aligned}
$$

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}-\left.2 x \frac{d y}{d x}\right|_{x=0}+2 \cdot f(0)=0
$$

$\delta \eta \lambda \lambda$.

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}-4+2=0
$$

$x \alpha \downarrow \alpha \rho \alpha$

$$
\left.\frac{d^{3} y}{d x^{3}}\right|_{x=0}=\left.2 \cdot 0 \frac{d^{2} y}{d x^{2}}\right|_{x=0}
$$

$$
\left.\frac{d^{4} y}{d x^{4}}\right|_{x=0}=\left.\left(0^{2}+2\right) \frac{d^{2} y}{d x^{2}}\right|_{x=0}
$$

$x \alpha t$ ย́ $\left.\tau \sigma t \frac{d^{4} y}{d x^{4}}\right|_{x=0}=4$.
(a) A $\nu y(x)=\mathrm{e}^{2 x} \sigma v v x, \nu \alpha \delta \delta i \xi \varepsilon \tau \varepsilon \delta \delta \iota$
3.

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=0
$$

(β) $\mathrm{A} v y=x \eta \mu(\alpha x), \delta \pi \circ \circ \alpha \in \mathbb{R}, \nu \alpha \delta \varepsilon i \xi \varepsilon \tau \varepsilon \delta \tau \iota$

$$
x \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+\alpha^{2} x y=-2 \eta \mu(\alpha x)
$$

Aúon

$$
\frac{d y}{d x}=\mathrm{e}^{2 x}(2 \sigma \omega v x-\eta \mu x) \kappa \alpha t \frac{d^{2} y}{d x^{2}}=\mathrm{e}^{2 x}(3 \sigma \omega v x-4 \eta \mu x)
$$

इovercos,

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=\mathrm{e}^{2 x}(3 \sigma v v x-4 \eta \mu x)-4 \mathrm{e}^{2 x}(2 \sigma n v x-\eta \mu x)+5 \mathrm{e}^{2 x} \sigma v v x=0
$$

$$
\frac{d y}{d x}=\eta \mu(\alpha x)+\alpha x \sigma v v(\alpha x) \kappa \alpha i \frac{d^{2} y}{d x^{2}}=\alpha(2 \sigma v v(\alpha x)-\alpha x \eta \mu(\alpha x))
$$

इoverás,
$x \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+\alpha^{2} x y=\alpha x(2 \sigma v v(\alpha x)-\alpha x \eta \mu(\alpha x))-2(\eta \mu(\alpha x)+\alpha x \sigma v v(\alpha x))+\alpha^{2} x^{2} \eta \mu(\alpha x)=-2 \eta \mu(\alpha x)$
4. $g(x)=\frac{f(x)}{\sqrt{1-x^{2}}} . N \alpha$ ठ $\varepsilon i \xi \varepsilon \tau \varepsilon$ óvi ηg txayoroisi $\tau \eta \Delta . \mathrm{E}$.

$$
\left(1-x^{2}\right) \frac{d^{2} g}{d^{2} x}-3 x \frac{d g}{d x}=g(x)
$$

Aúon

Eivacl

$$
\begin{aligned}
g(x)=\frac{f(x)}{\sqrt{1-x^{2}}} & \Rightarrow g(x) \cdot \sqrt{1-x^{2}} & =f(x) \\
& \Rightarrow \frac{d g}{d x} \cdot \sqrt{1-x^{2}}+\left(\sqrt{1-x^{2}}\right)^{\prime} & =f^{\prime}(x) \\
& \Rightarrow \frac{d g(x)}{d x} \cdot \sqrt{1-x^{2}}+\frac{2 x}{2 \sqrt{1-x^{2}}} \cdot g(x) & =f^{\prime}(x) \\
\left(F(x)=\frac{1}{\sqrt{1-x^{2}}}\right) & \Rightarrow \frac{d g}{d x} \cdot \sqrt{1-x^{2}}-\frac{x}{\sqrt{1-x^{2}}} \cdot g(x) & =\frac{1}{\sqrt{1-x^{2}}} \\
\left(\sqrt{1-x^{2}}\right) & \Rightarrow \frac{d g}{d x} \cdot\left(1-x^{2}\right)-x \cdot g(x) & =1
\end{aligned}
$$

$$
\frac{d^{2} g}{d x^{2}} \cdot\left(1-x^{2}\right)-2 x \frac{d g}{d x}-g(x)-x \cdot \frac{d g}{d x}=0
$$

$\delta \eta \lambda$.

$$
\left(1-x^{2}\right) \frac{d^{2} g}{d x^{2}}-3 x \frac{d g}{d x}=g(x)
$$

(x) $\Delta \varepsilon \epsilon \tau \tau \delta \delta \tau \sqrt{\frac{q \mu(x)+1}{1-\eta \mu(x)}}=\varepsilon \varphi(x)+\tau \varepsilon \mu(x)$.
5.
(β) $\Theta \omega \rho \eta \sigma \tau \varepsilon \tau \eta ~ \sigma v \chi \alpha \dot{\alpha} \rho \eta \sigma \eta \psi=\ln \sqrt{\frac{\eta \mu(x)+1}{\eta \mu(x)-1}} \cdot \Delta \varepsilon \dot{\xi} \tau \varepsilon \delta \tau \iota \frac{d \psi}{d x}=\tau \varepsilon \mu(x)=\sigma \varphi(x) \cdot \frac{d^{2} \psi}{d^{2} x}$.

núon

(a) Eívols

$$
\begin{gathered}
\frac{\eta \mu(x)+1}{1-\eta \mu(x)}=-\frac{(\eta \mu(x)+1)^{2}}{(\eta \mu(x)+1)=(\eta \mu(x)-1)}=-\frac{(\eta \mu(x)+1)^{2}}{\eta \mu^{2}(x)-1}=\frac{(\eta \mu(x)+1)^{2}}{\sigma \nu^{2}(x)}=\left(\frac{\eta \mu(x)+1}{\sigma \nu v(x)}\right)^{2} \\
=\left(\frac{\eta \mu(x)}{\sigma v v(x)}+\frac{1}{\sigma v(x)}\right)^{2}=(\varepsilon \varphi(x)+\tau \varepsilon \mu(x))^{2}
\end{gathered}
$$

$x \alpha L \alpha \rho \alpha$

$$
\sqrt{\frac{\eta \mu(x)+1}{1-\eta \mu(x)}}=\varepsilon \varphi(x)+\tau \varepsilon \mu(x)
$$

$$
\psi=\ln \sqrt{\frac{\eta \mu(x)+1}{\eta \mu(x)-1}}=\ln [-(\varepsilon \varphi(x)+\tau \varepsilon \mu(x))]
$$

$x \alpha L \alpha \rho \alpha$

$$
\begin{aligned}
\frac{d \psi}{d x} & =\frac{[-(\varepsilon \varphi(x)+\tau \varepsilon \mu(x))]^{\prime}}{-(\varepsilon \varphi(x)+\tau \varepsilon \mu(x))}=\frac{(\varepsilon \varphi(x)+\tau \varepsilon \mu(x))^{\prime}}{\varepsilon \varphi(x)+\tau \varepsilon \mu(x)}=\frac{(\varepsilon \varphi(x))^{\prime}+(\tau \varepsilon \mu(x))^{\prime}}{\varepsilon \varphi(x)+\tau \varepsilon \mu(x)} \\
& =\frac{\tau \varepsilon \mu^{2}(x)+\tau \varepsilon \mu(x) \cdot \varepsilon \varphi(x)}{\varepsilon \varphi(x)+\tau \varepsilon \mu(x)}=\frac{\tau \varepsilon \mu(x) \cdot(\tau \varepsilon \mu(x)+\varepsilon \varphi(x))}{\varepsilon \varphi(x)+\tau \varepsilon \mu(x)}=\tau \varepsilon \mu(x)
\end{aligned}
$$

$\Delta t \alpha \varphi \rho \rho \varepsilon \tau \iota \alpha$,

$$
\psi=\ln \sqrt{\frac{\eta \mu(x)+1}{\eta \mu(x)-1}}=\frac{1}{2} \ln \left(\frac{\eta \mu(x)+1}{\eta \mu(x)-1}\right)
$$

$x \alpha \iota \alpha \rho \alpha$

$$
\begin{aligned}
& \frac{d \psi}{d x}=\frac{1}{2} \cdot \frac{\left(\frac{\eta \mu(x)+1}{\eta \mu(x)-1}\right)^{\prime}}{\frac{\eta \mu(x)+1}{\eta \mu(x)-1}}=\frac{1}{2} \cdot \frac{\frac{(\eta \mu(x)+1)^{\prime} \cdot(\eta \mu(x)-1)-(\eta \mu(x)-1)^{\prime} \cdot(\eta \mu(x)+1)}{(\eta \mu(x)-1)^{2}}}{\frac{\eta \mu(x)+1}{\eta \mu(x)-1}} \\
& =\frac{1}{2} \cdot \frac{\sigma v(x) \cdot(\eta \mu(x)-1)-\sigma \nu v(x) \cdot(\eta \mu(x)+1)}{(\eta \mu(x)-1)^{2}} \frac{\eta \mu(x)+1}{\eta \mu(x)-1} \\
& =\frac{1}{2} \cdot \frac{\sigma \omega(x) \cdot \eta \mu(x)-\sigma \nu v(x)-\sigma \nu v(x) \cdot \eta \mu(x)-\sigma \nu v(x)}{(\eta \mu(x)-1) \cdot(\eta \mu(x)+1)} \\
& =\frac{1}{2} \cdot \frac{2 \sigma \nu \nu(x)}{\eta \mu^{2}(x)-1}=\frac{\sigma v(x)}{\sigma \nu v^{2}(x)}=\frac{1}{\sigma \nu v(x)}=\tau \varepsilon \mu(x)
\end{aligned}
$$

6 แん

núon

 в́रориц

$$
g^{\prime}(x)=\left[f\left(e^{x}\right)\right]^{\prime}=f^{\prime}\left(e^{x}\right) \cdot\left(e^{x}\right)^{\prime}=f^{\prime}\left(e^{x}\right) \cdot e^{x}, \forall x \in \mathbb{R}
$$

$x \propto t \alpha \rho \alpha$

$$
g^{\prime \prime}(x)=\left[f^{\prime}\left(e^{x}\right) \cdot e^{x}\right]^{\prime}=f^{\prime \prime}\left(e^{x}\right) \cdot e^{x}+f^{\prime}\left(e^{x}\right)\left(e^{x}\right)^{\prime}=f^{\prime \prime}\left(e^{x}\right) \cdot e^{x}+f^{\prime}\left(e^{x}\right) \cdot e^{x}, \forall x \in \mathbb{R}
$$

इvvercés, $g^{\prime \prime}(0)=f^{\prime \prime}\left(e^{0}\right) \cdot e^{0}+f^{\prime}\left(e^{0}\right) \cdot e^{0}=f^{\prime \prime}(1)+f^{\prime}(1)=1+1=2$

 $\chi_{\alpha}^{\alpha} \tau \omega(\pi \varepsilon \pi \lambda \varepsilon \gamma \mu \varepsilon ́ v \eta) \varepsilon \xi ̧ i \sigma \omega \sigma \eta:$
(a) $2 y+x^{2}=5$
(ß) $x^{2} \cdot y=1(x \neq 0)$
(ү) $4 x^{3}-y-x \cdot y^{2}=3$
(8) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=100(y \neq 0)$
(ع) $\quad \sigma v v(y)+2 \eta \mu(y)=11$
(σ) $x^{2} \cdot e^{y}-3 y^{2}=x^{2}+1$

^úon

(ब) $2 y+x^{2}=5 \Leftrightarrow 2 \frac{d y}{d x}+2 x=5 \Leftrightarrow \frac{d y}{d x}=\frac{5}{2}-x$
(阝) $\quad x^{2}-y=1 \Leftrightarrow \frac{d\left(x^{2}-y\right)}{d x}=\frac{d 1}{d x} \Leftrightarrow y \frac{d\left(x^{2}\right)}{d x}+x^{2} \frac{d y}{d x}=0 \Leftrightarrow 2 x y+x^{2} \frac{d y}{d x}=0$ $\Leftrightarrow \frac{d y}{d x}=-2 \frac{y}{x}$
(ү) $4 x^{3} \cdot y-x \cdot y^{2}=3 \Leftrightarrow \frac{d\left(4 x^{3}-y-x \cdot y^{2}\right)}{d x}=\frac{d 3}{d x} \Leftrightarrow 4 \frac{d\left(x^{3}-y\right)}{d x}-\frac{d\left(x \cdot y^{2}\right)}{d x}=0$
$\Leftrightarrow 12 x^{2} \cdot y+4 x^{3} \frac{d y}{d x}-y^{2} \frac{d y}{d x}-2 x y=0 \Leftrightarrow\left(4 x^{3}-y^{2}\right) \frac{d y}{d x}=2 x y-12 x^{2} \cdot y$ $\Leftrightarrow \frac{d y}{d x}=\frac{2 x \cdot y(1-6 x)}{4 x^{3}-y^{2}}$
(8) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=100 \Leftrightarrow \frac{1}{4} \frac{d\left(x^{2} \cdot\right)}{d x}+\frac{1}{9} \frac{d\left(-y^{2}\right)}{d x}=0 \Leftrightarrow \frac{x}{2}+\frac{2}{9} y \frac{d y}{d x}=0 \Leftrightarrow \frac{2}{9} y \frac{d y}{d x}=-\frac{x}{2}$

$$
\Leftrightarrow \frac{d y}{d x}=-\frac{9 x}{4 y}
$$

（c）$\quad \operatorname{\sigma ov}(y)+2 \eta \mu(y)=11 \Leftrightarrow-\eta \mu(y) \frac{d y}{d x}+2 \sigma \omega v(y) \frac{d y}{d x}=0 \Leftrightarrow \frac{d y}{d x}=\frac{n \mu(y)}{2 \sigma \nu v(y)}=\frac{1}{2} \varepsilon \varphi(y)$
（or）$\quad x^{2} \cdot e^{y}-3 y^{2}=x^{2}+1 \Leftrightarrow 2 x e^{y} \frac{d y}{d x}-6 y \frac{d y}{d x}=2 x \Leftrightarrow \frac{d y}{d x}=\frac{x}{x e^{y}-3 y}$

\úon

$$
\frac{d y}{d x}=\frac{y^{2}-2 x y}{x^{2}-2 x y} \quad\left(x \neq 0,2, \quad y \neq \frac{x}{2}\right)
$$

${ }^{A} \rho \alpha$

$$
\left.\frac{d y}{d x}\right|_{(1,3)}=-\frac{3}{5}
$$

$$
y=\frac{3}{5}(1-x)+3
$$

$x \alpha L \tau \eta \zeta$ « $\alpha \theta$ śtou

$$
y=\frac{5}{3}(x-1)+3 .
$$

2.

$$
y^{2}+4 x^{4}-10 x y+4 x+13=0
$$

ムúon

$$
2 y \frac{d y}{d x}+16 x^{3}-10 y-10 x \frac{d y}{d x}+4=0 \Leftrightarrow \frac{d y}{d x}=\frac{5 y-8 x^{3}}{y-5 x}
$$

 Eival η

$$
y=\frac{7}{2}(1-x)+3
$$

 をぞ大弓のワ
3.

$$
y^{2}+x y+x^{2}-1=0
$$

イúon

$y^{2}+x y+x^{2}-1=0$ ．Пороүшүічодие лєл $\lambda \varepsilon \gamma \mu \varepsilon ́ v \alpha$ ：

$$
2 y \frac{d y}{d x}+y+x \frac{d y}{d x}+2 x=0
$$

 $\left\{y^{2}+x y+x^{2}-1=0, \quad \frac{d y}{d x}=0\right\}=\left\{y^{2}+x y+x^{2}-1=0, \quad y=-2 x\right\}=\left\{3 x^{2}=1\right\}=\left\{x= \pm \frac{\sqrt{3}}{3}\right\}$

$$
\left(\frac{\sqrt{3}}{3},-\frac{2 \sqrt{3}}{3}\right) \text { ккt }\left(-\frac{\sqrt{3}}{3}, \frac{2 \sqrt{3}}{3}\right)
$$

$$
C:\left\{\begin{array}{c}
x(t)=t^{3}-8 t \\
y(t)=t^{2}
\end{array} \quad t \in \mathbb{R}\right.
$$

 бто о१นвío $\alpha \cup \tau$.

Aúon

(a) Eival

$$
\left\{\begin{array}{c}
x(t)=t^{3}-8 t \\
y(t)=t^{2}
\end{array}, t \in \mathbb{R} \Leftrightarrow\left\{\begin{array} { c }
{ x = t (t ^ { 2 } - 8) } \\
{ y = t ^ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
x^{2}=t^{2}\left(t^{2}-8\right)^{2} \\
y=t^{2}
\end{array} \Leftrightarrow x^{2}=y(y-8)^{2}, \quad x \in \mathbb{R}\right.\right.\right.
$$

$$
\frac{d y}{d t}=2 t \quad \kappa \alpha t \frac{d x}{d t}=3 t^{2}-8
$$

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 t}{3 t^{2}-8}
$$

'Ez τ,

$$
\lambda_{\varepsilon \varphi}(A)=\left.\frac{d y}{d x}\right|_{t=-1}=\frac{2 \cdot 1}{3 \cdot 1^{2}-8}=\frac{2}{5}
$$

$$
y-1=\frac{2}{5}(x-7), \delta \eta \lambda \cdot \eta 5 y-2 x-9=0
$$

 $x=x\left(t_{0}\right)$ б $\pi о \cup$
t_{0} चézoto $\left.\omega \sigma \tau \varepsilon \frac{d x}{d t}\right|_{t=t_{0}}=0 . \mathrm{A} \lambda \lambda \alpha$,

$$
\frac{d x}{d t}=0 \Leftrightarrow t=t \pm \sqrt{\frac{8}{3}}
$$

 $y=y\left(t_{0}\right)$ б $\pi 00$
$\left.t_{0} \tau \varepsilon ́ \tau o t o ~ 由 丂 \sigma \tau \varepsilon \frac{d y}{d t}\right|_{t=t_{0}}=0 . \mathrm{A} \lambda \lambda \alpha$,

$$
\frac{d y}{d t}=0 \Leftrightarrow t=0
$$

Tpiүшvoueтpia

$$
\eta \mu\left(22^{\circ}\right) \sigma v \nu\left(23^{\circ}\right)+\eta \mu\left(22^{\circ}\right) \sigma v \nu\left(23^{\circ}\right) \text { коธ } \eta \mu\left(65^{\circ}\right) \sigma u v\left(35^{\circ}\right)-\eta \mu\left(35^{\circ}\right) \eta \mu\left(25^{\circ}\right)
$$

Aúon

'Eұouие

$$
\eta \mu\left(22^{\circ}\right) \sigma v v\left(23^{\circ}\right)+\eta \mu\left(22^{\circ}\right) \sigma v v\left(23^{\circ}\right) \quad=\quad \eta \mu\left(22^{\circ}+23^{\circ}\right)=\eta \mu\left(45^{\circ}\right)=\frac{\sqrt{2}}{2}
$$

$x \propto 1$

$$
\begin{aligned}
\eta \mu\left(65^{\circ}\right) \sigma v v\left(35^{\circ}\right)-\eta \mu\left(35^{\circ}\right) \eta \mu\left(25^{\circ}\right) & =\eta \mu\left(90^{\circ}-25^{\circ}\right) \sigma v\left(35^{\circ}\right)-\eta \mu\left(35^{\circ}\right) \eta \mu\left(25^{\circ}\right) \\
\eta \mu\left(90^{\circ}-25^{\circ}\right)=\operatorname{\sigma vv}\left(25^{\circ}\right) & =\operatorname{\sigma uv(25^{\circ })\sigma v\nu (35^{\circ })-\eta \mu (35^{\circ })\eta \mu (25^{\circ })} \\
& =\operatorname{\sigma uv(25^{\circ }+35^{\circ })=\sigma vv(60^{\circ })=\frac {1}{2}}
\end{aligned}
$$

^úon

'Exoune:

$$
A(x)=\eta \mu x \sigma \omega v x+1=\frac{\eta \mu(2 x)}{2}+1
$$

A $\lambda \lambda \alpha$,

$$
\begin{aligned}
-1 & \leq \eta \mu(2 x) \leq 1 \Rightarrow-\frac{1}{2} \leq \frac{\eta \mu(2 x)}{2} \leq \frac{1}{2} \Rightarrow-\frac{1}{2} \leq-\frac{\eta \mu(2 x)}{2} \leq \frac{1}{2} \\
& \Rightarrow 1-\frac{1}{2} \leq 1+\frac{\eta \mu(2 x)}{2} \leq 1+\frac{1}{2} \Rightarrow \frac{1}{2} \leq \underbrace{1+\frac{\eta \mu(2 x)}{2}}_{=A(x)} \leq \frac{3}{2}
\end{aligned}
$$

[^1] $\alpha \rho \operatorname{\omega nos} \frac{3}{2}$.

3. $\sigma \chi \varepsilon ́ \sigma \eta$
$$
\varepsilon \varphi(B-A)=\sigma \varphi(2 A)
$$

núon

$K \propto \tau \alpha \rho \chi \alpha, 5$,

$$
\varepsilon \varphi B=\frac{\eta \mu(2 A)}{1-\sigma \nu \nu(2 A)}=\frac{2 \eta \mu A \sigma \nu \nu A}{2 \eta \mu^{2} A}=\frac{\sigma \nu \omega A}{\eta \mu A}=\sigma \varphi A
$$

$x \alpha L \alpha \rho \alpha$,

$$
\varepsilon \varphi A \cdot \varepsilon \varphi B=\varepsilon \varphi A \cdot \sigma \varphi A=1
$$

$T \omega \rho \alpha$,

$$
\begin{aligned}
\varepsilon \varphi(B-A) & =\frac{\varepsilon \varphi B-\varepsilon \varphi A}{1+\underbrace{\varepsilon \varphi A \varepsilon \varphi B}_{=1}}=\frac{\frac{\sigma \nu v A}{\eta \mu A}-\frac{\eta \mu A}{\sigma \nu A}}{2}=\frac{\sigma v^{2} A-\eta \mu^{2} A}{2 \eta \mu A \sigma v A} \\
& =\frac{\sigma v v(2 A)}{\eta \mu(2 A)}
\end{aligned}
$$

4.

$$
\sigma \varphi(B-A)=\frac{\sigma \nu v(2 B)-3}{\eta \mu(2 B)}
$$

^úon

K $\alpha \tau \alpha \rho \chi \alpha$,

$$
\varepsilon \varphi A=2 \varepsilon \varphi B \Rightarrow \frac{1}{\sigma \varphi A}=\frac{2}{\sigma \varphi B} \Rightarrow \sigma \varphi A=\frac{\sigma \varphi B}{2}
$$

'E $\tau \sigma$,

$$
\begin{aligned}
& \sigma \varphi(B-)=\frac{\sigma \varphi(B) \sigma \varphi(A)+1}{\sigma \varphi(A)-\sigma \varphi(B)}=\frac{\sigma \varphi(B) \cdot \frac{\sigma \varphi B}{2}+1}{\frac{\sigma \varphi B}{2}-\sigma \varphi(B)}=-\frac{\sigma \varphi^{2}(B)+2}{\sigma \varphi(B)} \\
& =-\frac{\frac{\sigma \nu \nu^{2}(B)}{\eta \mu^{2}(B)}+2}{\frac{\sigma v(B)}{\eta \mu(B)}}=-\frac{\frac{\sigma \nu \nu^{2}(B)+2 \eta \mu^{2}(B)}{\eta \mu^{2}(B)}}{\frac{\sigma \nu v(B)}{\eta \mu(B)}}=-\frac{\frac{\sigma \nu \nu^{2}(B)+2 \eta \mu^{2}(B)}{\eta \mu^{2}(B)}}{\frac{\sigma v(B)}{\eta \mu(B)}} \\
& =-\frac{\sigma v v^{2}(B)+2 \eta \mu^{2}(B)}{\eta \mu(B) \sigma v(B)}=-\frac{\sigma v v^{2}(B)+2\left[1-\sigma \nu^{2}(B)\right]}{\frac{1}{2} \cdot \eta \mu(2 B)}=-2 \frac{2-\sigma v v^{2}(B)}{\eta \mu(2 B)} \\
& =\frac{2 \sigma \nu v^{2}(B)-4}{\eta \mu(2 B)}=\frac{\operatorname{\sigma uv}(2 B)+1-4}{\eta \mu(2 B)}=\frac{\sigma u v(2 B)-3}{\eta \mu(2 B)}
\end{aligned}
$$

5.

$$
K=\eta \mu A+\sigma \nu \nu A .
$$

^úon

K $\alpha \tau \alpha \rho \chi \alpha, 5$;

$$
\eta \mu(2 A)=\frac{5}{4} \Rightarrow 2 \eta \mu \hat{A}-\sigma v N A=\frac{5}{4}
$$

$$
K=\eta \mu A+\sigma v N A \Rightarrow K^{2}=\eta \mu^{2} A+2 \eta \mu A \cdot \sigma v v A+\sigma v v^{2} A=1+\underbrace{2 \eta \mu A \cdot \sigma v A A}_{\frac{-5}{4}}=\frac{9}{4}
$$

 1 عขต ท ทธ́

$$
\varepsilon \varphi x+\varepsilon \varphi y+\varepsilon \varphi z=\varepsilon \varphi x \cdot \varepsilon \varphi y \cdot \varepsilon \varphi z
$$

6.

$$
\varepsilon \varphi A+\varepsilon \varphi B+\varepsilon \varphi \Gamma=\varepsilon \varphi A \cdot \varepsilon \varphi B \cdot \varepsilon \varphi \Gamma
$$

Кúon

(a) Exouns ${ }^{2}$

$$
x+y+z=0 \Rightarrow x+y=-z
$$

Tóтє,

$$
\begin{array}{rll}
x+y=-z & \Rightarrow & \varepsilon \varphi(x+y)=\varepsilon \varphi(-z) \\
& \Rightarrow & \frac{\varepsilon \varphi x+\varepsilon \varphi y}{1-\varepsilon \varphi x \varepsilon \varphi y}=-\varepsilon \varphi z \\
& \Rightarrow & \varepsilon \varphi x+\varepsilon \varphi y=-\varepsilon \varphi z(1-\varepsilon \varphi x \cdot \varepsilon \varphi y) \\
& \Rightarrow & \varepsilon \varphi x+\varepsilon \varphi y+\varepsilon \varphi z=\varepsilon \varphi x \cdot \varepsilon \varphi y \cdot \varepsilon \varphi z
\end{array}
$$

$$
\hat{A}+\hat{B}+\hat{I}=180^{\circ} \Rightarrow \hat{A}+\hat{B}=180^{\circ}-\hat{\Pi}
$$

E $\tau \sigma 1$,

$$
\begin{array}{rll}
\hat{A}+\hat{B}=180^{\circ}-\hat{f} & \Rightarrow & \varepsilon \varphi(\hat{A}+\hat{B})=\varepsilon \varphi\left(180^{\circ}-\hat{\Gamma}\right) \\
& \Rightarrow & \frac{\varepsilon \varphi \hat{A}+\varepsilon \varphi \hat{B}}{1-\varepsilon \varphi \hat{A} \cdot \varepsilon \varphi \hat{B}}=-\varepsilon \varphi \hat{\Gamma} \\
& \Rightarrow & \varepsilon \varphi \hat{A}+\varepsilon \varphi \hat{B}=-\varepsilon \varphi \tilde{\Gamma}(1-\varepsilon \varphi \hat{A} \cdot \varepsilon \varphi \hat{B}) \\
& \Rightarrow \quad \varepsilon \varphi \hat{A}+\varepsilon \varphi \hat{B}+\varepsilon \varphi \hat{\Gamma}=\varepsilon \varphi \hat{A} \cdot \varepsilon \varphi \hat{B} \cdot \varepsilon \varphi \hat{\Gamma}
\end{array}
$$

7.

$$
\alpha E_{A B I}=R \beta \gamma \sigma v v^{2}\left(\frac{A}{2}\right),
$$

$y \alpha \delta \varepsilon i \xi \varepsilon \tau \varepsilon d \sigma L A=\frac{\pi}{3}$.

[^2]
^ưon

Exoupe

$$
\begin{aligned}
\alpha \boldsymbol{E}_{A B T}=R \beta \gamma \sigma v v^{2}\left(\frac{A}{2}\right) & \Leftrightarrow \alpha \frac{\alpha \beta \gamma}{4 R}=R \beta \gamma \sigma v v^{2}\left(\frac{A}{2}\right) \quad \Leftrightarrow \frac{\alpha^{2}}{4 R^{2}}=\sigma v v^{2}\left(\frac{A}{2}\right) \\
& \Leftrightarrow\left(\frac{\alpha}{2 R}\right)^{2}=\sigma w v^{2}\left(\frac{A}{2}\right) \quad \Leftrightarrow \quad \eta \mu^{2} A=\sigma v v^{2}\left(\frac{A}{2}\right) \\
& \Leftrightarrow 4 \eta \mu^{2}\left(\frac{A}{2}\right) \sigma w v^{2}\left(\frac{A}{2}\right)=\sigma w v^{2}\left(\frac{A}{2}\right) \\
& \Leftrightarrow \sigma v v^{2}\left(\frac{A}{2}\right)\left[4 \eta \mu^{2}\left(\frac{A}{2}\right)-1\right]=0 \\
& \Leftrightarrow\left(\sigma v v^{2}\left(\frac{A}{2}\right)=0\right) \vee\left(4 \eta \mu^{2}\left(\frac{A}{2}\right)-1=0\right) \\
& \Leftrightarrow\left(\frac{A}{2}=\frac{\pi}{2}\right) \vee\left(\eta \mu\left(\frac{A}{2}\right)=\frac{1}{2}\right) \Leftrightarrow(A=\pi) \vee\left(\frac{A}{2}=\frac{\pi}{6}\right) \\
& \Leftrightarrow A=\frac{\pi}{3}
\end{aligned}
$$

núon

Eivoct

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{4 / 5}}{h}=\lim _{h \rightarrow 0^{+}} \frac{1}{h^{1 / 5}}=+\infty
$$

 $\mu \dot{\alpha} \lambda \omega \sigma \alpha \alpha$
2.

$$
f^{(v)}(x)=\left\{\begin{array}{c}
-(x-v) e^{-x}, \alpha v \nu \pi \varepsilon \rho \iota \tau \tau\langle ́ \varsigma \\
(x-v) e^{-x}, \alpha v v \alpha \rho \tau \iota \varrho \varsigma
\end{array}\right.
$$

Aúon

$$
P(v)=f^{(v)}(x)=\left\{\begin{array}{l}
-(x-v) e^{-x}, \alpha v v \pi \varepsilon \rho \iota \tau \tau o ́ \varrho \\
(x-v) e^{-x}, \alpha v v \alpha \dot{\alpha} \rho t \iota \varrho
\end{array}\right.
$$

В ${ }^{\prime} \mu \boldsymbol{\alpha} 1$

$\Gamma i \alpha v=1$, Eivod

$$
f^{(1)}(x)=f^{\prime}(x)=e^{-x}-x e^{x}=-(x-1) e^{x}, \quad \forall x \in \mathbb{R}
$$

B $\boldsymbol{\eta} \mu \alpha 2$

$$
f^{(x)}(x)=(x-v) e^{-x}, \quad \forall x \in \mathbb{R} \quad(\varepsilon, v .)
$$

$\delta \eta \lambda$.

$$
f^{(2 \lambda)}(x)=(x-2 \lambda) e^{-x}, \quad \forall x \in \mathbb{R} \quad(\varepsilon . u .)
$$

$\delta \eta \lambda . \quad$ о $\tau \iota \eta P(\kappa)=P(2 \lambda) \alpha \lambda \eta \theta \varepsilon u ́ \varepsilon \iota$.

$$
f^{(\kappa+1)}(x)=(x+(k+1)) e^{-x}, \quad \forall x \in \mathbb{R}
$$

$\delta \eta \lambda$. б $\tau \eta P(\kappa+1) \equiv P(2 \lambda+1) \alpha \lambda \eta \theta \varepsilon \sigma \varepsilon \iota$.
 $\pi \alpha \rho \alpha \gamma \omega \gamma i \sigma ч \eta ~ \sigma 0 \nu \alpha ́ \rho \pi \eta \sigma \eta ~ \mu \varepsilon$

$$
\begin{array}{rlrl}
& & \left(f^{(x)}(x)\right)^{\prime} & =\left(f^{(2 \lambda)}(x)\right)^{\prime}=\left((x-2 \lambda) e^{-x}\right)^{\prime}=(x-2 \lambda)^{\prime} e^{-x}-(x-2 \lambda) e^{-x} \\
\Rightarrow & f^{(2 \kappa+1)}(x) & =e^{-x}-(x-2 \lambda) e^{-x}, \quad \forall x \in \mathbb{R} \\
\Rightarrow & f^{(2 \lambda+1)}(x) & =((2 \lambda+1)-x) e^{-x}, \quad \forall x \in \mathbb{R} \\
\Rightarrow & f^{(2 \lambda+1)}(x) & =-(x-(2 \lambda+1)) e^{-x}, \quad \forall x \in \mathbb{R}
\end{array}
$$

Bй $\mu \alpha 3$

$\Delta \varepsilon i \xi \tau \varepsilon$ d $\tau \mathrm{L}$ to брLo
3.

$$
\lim _{x \rightarrow 0} \frac{\eta \mu(\eta \mu(x))}{x}
$$

$v \pi \alpha \dot{\rho} \alpha \varepsilon \iota$.

ムúणך

Exoune

$$
\lim _{x \rightarrow 0} \frac{\eta \mu(\eta \mu(x))}{x}=\lim _{x \rightarrow 0}\left(\frac{\eta \mu(\eta \mu(x))}{\eta \mu(x)} \cdot \frac{\eta \mu(x)}{x}\right)
$$

 $\mu \varepsilon \tau \alpha \sigma \chi \eta \mu \alpha \tau\llcorner\sigma \alpha \dot{\prime} u=\eta \mu(x)$. То́тє $x \rightarrow 0 \Leftrightarrow u \rightarrow 0$ к $\alpha \iota \alpha \rho \alpha$

$$
\lim _{x \rightarrow 0} \frac{\eta \mu(\eta \mu(x))}{\eta \mu(x)}=\lim _{u \rightarrow 0} \frac{\eta \mu(u)}{u}=1
$$

 $\left(\lim _{x \rightarrow 0} \frac{\eta \mu(\eta \mu(x))}{n \mu(x)}\right) \cdot\left(\lim _{x \rightarrow 0} \frac{\eta \mu(\eta \mu(x))}{\eta \mu(x)}\right)=1, \delta \eta \lambda$.

$$
\lim _{x \rightarrow 0} \frac{\eta \mu(\eta \mu(x))}{x}=1
$$

Aல́on

'Exou ue:

$$
\begin{aligned}
\alpha^{4}+\beta^{4}=\gamma^{4} & \Leftrightarrow \alpha^{4}+\beta^{4}+-2 \alpha^{2} \beta^{2}=\gamma^{4} \\
& \Leftrightarrow\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}=\gamma^{4} \\
& \Leftrightarrow\left(\alpha^{2}+\beta^{2}\right)^{2}-\left(\gamma^{2}\right)^{2}=2 \alpha^{2} \beta^{2}
\end{aligned}
$$

Tópos,

$$
\begin{aligned}
& 2 \eta \mu^{2} \Gamma=(\varepsilon \varphi A) \cdot(\varepsilon \varphi B) \quad \Leftrightarrow \quad 1-\sigma \nu \nu(2 \Gamma)=\frac{\eta \mu A \mu B}{\sigma \nu v A \sigma \nu B} \quad \Leftrightarrow \quad 1-\frac{\eta \mu A \mu B}{\sigma \nu \nu A \sigma v v B}=\sigma \omega \nu(2 \Gamma) \\
& \Leftrightarrow \frac{\sigma w A \sigma w B-\eta \mu A \mu B}{\sigma w A \sigma \omega B}=\operatorname{\sigma wv}\left(2 \Gamma^{\prime}\right) \Leftrightarrow \frac{\operatorname{\sigma wv}(A+B)}{\sigma w A \sigma v B}=\operatorname{\sigma ov}(2 \overline{ }) \\
& \Leftrightarrow \frac{\sigma v v(\pi-\Gamma)}{\sigma v A \sigma v v B}=\sigma u v(2 \Gamma) \quad \Leftrightarrow \quad-\frac{\sigma v \Gamma}{\sigma \omega N A \sigma v D}=\operatorname{\sigma uv}(2 \Gamma) \\
& \Leftrightarrow \quad \sigma \omega v A \sigma v v B=\frac{\sigma \omega \nu \Gamma}{\sigma \omega v(2 \Gamma)}(* *)
\end{aligned}
$$

$$
2 \eta \mu^{2} T=\frac{\eta \mu A \eta \mu B}{\sigma w A \sigma w B}, \delta \eta \lambda .2 \eta \mu^{2} \Gamma=(\varepsilon \varphi A) \cdot(\varepsilon \varphi B)
$$

$$
P(x)=\frac{x^{2}-4 x-5}{x+1} \text { xox } Q(x)=x-5
$$

Eival $\alpha 0 \tau$ ह́s "єбец;"
 $\eta Q(x):$

[^3]$$
P(x)=\frac{x^{2}-4 x-5}{x-1}=\frac{(x-5)(x+1)}{x-1}=x-5
$$

 оиvaprịのers．

 $(f \cdot g)(x)=f(x) \cdot g(x)$ ．
 орi弓s $\tau \alpha \operatorname{\omega s} x \mapsto[F(p)](x)=p(x)^{6}$ عival：

（7）Eto̊

Oрьоио́

Паратпррабегц

 бо́vo入o $\{(x, f(x)\} \in G(f): x \in E\}$ ．

$$
f(x)=\left\{\begin{array}{cc}
x, & x \in[0,1) \\
x^{2}, & x \in[1,+\infty)
\end{array}\right.
$$

[^4]

$$
|f|(x)=|f(x)|, \quad \forall x \in D(f)
$$

 $y=|f(x)|$

П $\alpha \propto \alpha ิ \varepsilon โ \uparrow \mu \alpha \tau \alpha$

Eчарриоүи́

 $\beta, \gamma \in \mathbb{R}$ ठ̃v عivol 1-1.

^úon

$$
f(x)=\alpha\left(x+\left(-\frac{\beta}{2 \alpha}\right)\right)-\frac{\beta^{2}-4 \alpha \gamma}{4 \alpha}
$$

Tóve aival $x_{1}=-\frac{\beta}{2 \alpha}+1>-\frac{\beta}{2 \alpha}-1=x_{2}\left(x_{1}=x_{2}+1\right) \alpha \lambda \lambda \alpha$

$$
f\left(-\frac{\beta_{\beta}^{2 \alpha}}{2 \alpha}+1\right)=\alpha-\frac{\beta^{2}-4 \alpha \gamma}{4 \alpha}=8 \alpha \gamma+\beta^{2}=f\left(-\frac{\beta}{2 \alpha}-1\right)
$$

 тро́бทио тทร Δ tкx

$$
f(x)=|g(x)|=\left\{\begin{array}{lr}
g(x), & x \in\left(-\infty, x_{1}\right] \cup\left[x_{2},+\infty\right) \\
-g(x), & x \in\left(x_{1}, x_{2}\right)
\end{array}=\left\{\begin{aligned}
\alpha\left(x-x_{1}\right)\left(x-x_{2}\right), & x \in\left(-\infty, x_{1}\right] \cup\left[x_{2},+\infty\right) \\
-\alpha\left(x-x_{1}\right)\left(x-x_{2}\right), & x \in\left(x_{1}, x_{2}\right)
\end{aligned}\right.\right.
$$

$$
f_{+}^{+}\left(x_{1}\right)=\lim _{x \rightarrow h^{+}} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}=-\alpha\left(x_{1}-x_{2}\right)
$$

$x<1$

$$
f_{-}^{t}\left(x_{1}\right)=\lim _{x \rightarrow h^{-}} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}=\alpha\left(x_{1}-x_{2}\right)
$$

EтбL,

$$
f^{\prime}(x)=\left\{\begin{array}{c}
2 \alpha x+\beta, \quad x \in\left(-\infty, x_{1}\right) \cup\left(x_{2},+\infty\right) \\
-(2 \alpha x+\beta), \quad x \in\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

A poú ท oovápinan eivol ovveरи́s $\alpha \lambda \lambda \alpha$ ól

 $x \propto \iota\left(x_{2}, f\left(x_{2}\right)\right)$. $\tau \sigma$ ठє апиعio $\left(-\frac{\beta}{2 \alpha}, f\left(-\frac{\beta}{2 \alpha}\right)\right)=\quad\left(-\frac{\beta}{2 \alpha},-\frac{\Delta(g)}{4 \alpha}\right)=$

Oplozós

 elvol ot $\alpha \theta$ epn ($\sigma o v \alpha \rho \tau \eta \sigma \eta$).

Паратпрйог:ร

${ }^{8} \Delta \eta \lambda A_{1} \cup A_{2} \cup \cdots \cup A_{m}=A \kappa \alpha\left\llcorner A_{i} \cap A_{j}=\emptyset \gamma \operatorname{\alpha } \kappa \alpha \dot{\alpha} \theta \varepsilon i, j \in\{1,2, \cdots, m\} \mu \varepsilon i \neq j\right.$
 $\tau \dot{\varepsilon} \tau \circ L \alpha \sigma 0 \nu \alpha \dot{\rho} \tau \eta \sigma \eta$ $\lambda \varepsilon \dot{\varepsilon} \gamma \varepsilon \tau \alpha \iota x \alpha \iota x \alpha \tau \alpha \dot{\alpha} \mu \eta \eta^{\prime} \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon \rho \eta \dot{\eta}$（piecewise constant function）．

Параб̈віүนата

ii．Eका $f:[-3,2] \rightarrow \mathbb{R} \mu \varepsilon$ то́т०

$$
f(x)=\left\{\begin{array}{lc}
2, & \alpha v-3 \leq x<1 \\
-1, & \alpha v 1 \leq x \leq 2
\end{array}\right.
$$

 $A_{1} x \propto L f(x)=-1, \forall x \in A_{2}$ ．

Tevtxés Aoxhaets Keqceratou 0

$$
f(x)=\frac{x}{1+|x|}
$$

 отолоүібете $\tau \alpha$

$$
\lim _{x \rightarrow+\infty} f(x) \text { к } \alpha t \lim _{x \rightarrow-\infty} f(x)
$$

$$
f(x)=\frac{1}{3}|3 x-9|
$$

（3）Eqтe η бová $\rho \tau \eta \sigma \eta$ f $\mu \varepsilon$ то́то

$$
f(x)=\left\{\begin{array}{cc}
|x-1|, & x \neq 1 \\
1, & x=1
\end{array}\right.
$$

$\mathrm{N} \alpha \tau \eta \mu \varepsilon \lambda \varepsilon \tau \eta \dot{\rho} \varepsilon \tau \varepsilon \omega \zeta \pi \rho \circ \varsigma \tau \eta$ $\sigma v \vee \varepsilon ́ \chi \varepsilon เ \alpha$.
（4）Av $f \sigma o \nu \alpha ́ \rho \tau \eta \sigma \eta ~ \tau \varepsilon ́ \tau o t \alpha ~ \omega ́ \sigma \tau \varepsilon ~ \lim _{x \rightarrow 0} \frac{f(x)}{x}=1$ ，v α

$$
\lim _{x \rightarrow 0} \frac{f(4 x)}{x}
$$

$$
\left.\begin{array}{c}
x(t)=t^{3}+2 \\
y(t)=3 t^{2}+5 t+1
\end{array}\right\}
$$

$$
\frac{d y}{d x} \kappa \alpha t \frac{d^{2} y}{d x^{2}}
$$

 x $\alpha \tau \alpha о ́ \rho \cup \varphi \eta ~ \varepsilon \varphi \alpha \pi \tau о \mu \varepsilon ́ v \eta ~ \sigma \tau о ~ а \eta u \varepsilon i o ~ \mu \varepsilon ~$ $t=0$ ．

$$
\left.\begin{array}{l}
x(t)=3 t \\
y(t)=\frac{1}{t^{2}}
\end{array}\right\}
$$

$$
\frac{d y}{d x} \text { кк儿 } \frac{d^{2} y}{d x^{2}}
$$

$$
\left.\begin{array}{c}
x(t)=\eta \mu t \\
y(t)=\operatorname{cov}(2 t)
\end{array}\right\}
$$

$$
\frac{d y}{d x} \kappa \alpha a \frac{d^{2} y}{d x^{2}}
$$

$$
\left.\begin{array}{l}
x(t)=\frac{2+t}{1+2 t} \\
y(t)=\frac{3+2 t}{t}
\end{array}\right\}
$$

$$
\frac{d y}{d x} \text { к人t } \frac{d^{2} y}{d x^{2}}
$$

$\Lambda i \sigma \tau \alpha \sigma \mu \beta \sigma \lambda \omega v:$

$$
\begin{aligned}
& \varnothing \text { = то หรуठ б兀์yоло }
\end{aligned}
$$

$\mathbb{R}_{*}=\mathbb{R}-\{0\}$
$\mathbb{R}_{+}=(0,+\infty)$

$$
\begin{aligned}
& \mathrm{A} \cap \mathrm{~B}=\underset{x \neq \mathrm{B}}{\eta \tau \sigma \mu \dot{\eta} \tau \omega \nu \sigma \nu \nu \delta \lambda \omega \nu \mathrm{~A}}
\end{aligned}
$$

$\pi \rho \propto ү \mu \propto \tau \iota х о и ́ s ~ \alpha \rho เ \theta \mu о ́ s$
$\overline{\mathbb{R}} \quad \equiv \mathbb{R} \cup\{\infty\}$

इоцßодı $\sigma \mu$ о:

$$
\begin{aligned}
& Z(f)=(\pi р \alpha \gamma \nu \alpha \tau \iota \chi \omega \nu) \rho(\zeta \omega \nu
\end{aligned}
$$

$$
\begin{aligned}
& C_{f} \equiv \operatorname{Gr}(f)=\text { To रodup } \quad=\boldsymbol{\mu} \boldsymbol{\pi} \boldsymbol{n s}_{s} f=\left\{(x, y) \in \mathbb{R}^{2}: x \in A, y=f(x)\right\} \\
& =\left\{(x, f(x)) \in \mathbb{R}^{2}: x \in A\right\}
\end{aligned}
$$

$$
\begin{aligned}
& C^{1}(\mathbb{R})=
\end{aligned}
$$

Bı $\beta \lambda \iota о \gamma \rho \alpha \varphi i^{\alpha} \alpha$

 2003

 Екסо́бعıৎ इvu
 2017
 2007, Avatúmuon 2016
[Bal] Ball, Keith M, "B: Fibonacci's Rabbits Revisited", Strange Curves, Counting Rabbits, and Other Mathematical Explorations, Princeton, NJ: Princeton University Press, 2003, ISBN 0-691-11321-1.
[BGO] Bernard R. Gelbau, John M. H. Olmsted-Counterexamples in Analysis, Dover Publications, Inc., New York, 2003 (corrected republication)
[Fey] Richard Feynman, The Meaning of lt All. Thoughts of a Cttizen-Scientist, 1998, Addison-Wesley ISBN 0-201-36080-2
[Fra] Frances Kirwan, Complex Algebraic Curves (London Mathematical Society Student Texts), Cambridge University Press, 1992

[Gr]] Grabiner, Judith V. - "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus", The American Mathematical Monthly. Mathematical Association of America. 90 (3): 185-194, (March 1983).
[HoA] Howard Anton, Calculus-Early Transcendentals, Seventh Edition, 2002 John Wiley \& Sons
[JHL] John H Lienhard IV and John H Lienhard V, 'A Heat Transfer Textbook', Third Edition, Phlogyston Press, Cambridge Massachusetts
 غ́к $\delta о \sigma \eta, 2010$
[StB] Sterling K. Berberian, A First Course in Real Analysis, Springer, 1994
[Rex] Wu, Rex H. "Proof Without Words: Euler's Arctangent Identity", Mathematics Magazine 77(3), June 2004, p. 189.

"Words can be meaningless. If they are used in such a way that no sharp conclusions can be drawn."
- Richard P. Feynman[Fey]

MaOnuareká B’^ukelou KateúOuvoņ

"Words can be meaningless.
If they are used in such a
way that no sharp
conclusions can be drawn."

[^0]: ムєижшоía， 2019

[^1]: ${ }^{1} \mathrm{H} A(x)$ Evwpeital w, ouvápthon tou x

[^2]:

[^3]:
 ${ }^{4}$ avacépovtau xal шs фо́pues

[^4]:

